
Chapter 1

Numbers

Figure 1.1: Unlike humans, computers can only understand binary

In the first module of this course, we will investigate one big question: How does everything that
a computer does get simplified into 0’s and 1’s? It is a beautiful and well thought out process that
will have us digging deep into how computers and programming languages were designed. But to
understand any of that, we will need to begin at the very beginning: numbers.

We cannot begin our discussion of numbers in computers without stripping away 2 fundamental
assumptions we already make about them in our everyday lives: we only have the digits 0-9 to work

1



2 CHAPTER 1. NUMBERS

with, and there is no limit to how high you can count. The first assumption leads us to a discussion
of bases and the second, the topic of representable ranges.

1.1 Bases

Look at your hands. For most of you, you will see 10 fingers. For this reason alone, in our lives,
we work in base 10. This means that any number can be broken up into scaled powers of ten. For
example, the number 421 can be broken up into (4 ∗ 102) + (2 ∗ 101) + (1 ∗ 100). For any base b, we
only have b digits to work with. Therefore, in computers, since we only have 2 digits to work with,
{0, 1}, computers represent numbers in base 2.

The common bases we work with in this course are decimal (base 10), hexadecimal (base 16),
octal (base 8), and binary (base 2).

1.2 Converting from Decimal

To gain a deeper understanding of numbers and their different bases, it is useful to look at numbers
that we normally view in base 10, in another base. The process of converting from one base to
another is quite tedious; the only way to get better and faster at it is to simply just practice. For
the sake of keeping things exciting, I will illustrate this by converting from decimal to octal, though
it is a worthwhile exercise to practice converting to other bases as well.

Say I wish to convert 421, which is in base 10, to base 8. As we just learned above, a number
is just made up of its powers, so just like how 421 is made up of four 100’s, two 10’s, and one 1, to
convert it into octal, we need to figure out how we can break down 421 into a 1’s, b 8’s, c 64’s, and
so on. The procedure for converting a number n in base 10 to base b is as follows:

1. Find the largest power of b that is ≤ n, we’ll call this number x

2. Keep subtracting x from n until you can’t anymore without going negative

3. Keep a tally of how many times you subtracted x

4. Go back to step 1 and repeat until n == 0

Let’s illustrate this with an example by converting 421 to its octal representation:

Firstly, we can note that the highest power of 8 that fits into 421 is 64.



1.3. CONVERTING TO BINARY 3

Step n 64’s 8’s 1’s
0 421 0 0 0
1 421 - 64 = 357 1 0 0
2 357 - 64 = 293 2 0 0
3 293 - 64 = 229 3 0 0
4 229 - 64 = 165 4 0 0
5 165 - 64 = 101 5 0 0
6 101 - 64 = 37 6 0 0
7 37 - 8 = 29 6 1 0
8 29 - 8 = 21 6 2 0
9 21 - 8 = 13 6 3 0
10 13 - 8 = 5 6 4 0
11 5 - 1 = 4 6 4 1
12 4 - 1 = 4 6 4 2
13 3 - 1 = 4 6 4 3
14 2 - 1 = 4 6 4 4
15 1 - 1 = 0 6 4 5

So, 421 in base 10 becomes 645 in base 8! (This can also be denoted as 6458). We can reverse-
engineer the number to prove that this is correct:

(6 ∗ 82) + (4 ∗ 81) + (5 ∗ 80) = 384 + 32 + 5 = 421

Cool! But this is kinda annoying and tedious, right? Well, luckily, converting to binary, which
we do much more often, is more intuitive and straightforward.

1.3 Converting to Binary

We can repeat the process above for base 2 to convert to binary, and we would get the correct result
(do it for practice pls). However, if you don’t wish to think about powers of two and keeping tallies
and what not, there is a nice handy trick that you can use:

1. Is n odd? If yes, write a 1, else 0

2. n = n//2

3. Repeat until n == 0

One thing to note is that when building up the number, we add digits onto the left side. Now,
let’s repeat the example above, but this time using this new trick:



4 CHAPTER 1. NUMBERS

Step n Building Binary
0 421 1
1 421 // 2 = 210 01
2 210 // 2 = 105 101
3 105 // 2 = 52 0101
4 52 // 2 = 26 00101
5 26 // 2 = 13 100101
6 13 // 2 = 6 0100101
7 6 // 2 = 3 10100101
8 3 // 2 = 1 110100101
9 1 // 2 = 0 0110100101

And so 421 in binary is 1101001012. Let’s verify this:

20 + 22 + 25 + 27 + 28 = 1 + 4 + 32 + 128 + 256 = 421

Great! Hopefully, this shortcut will alleviate some of tediousness of this conversion.

1.4 Number Representation

Now we can move on to the opposite procedure: given a binary number, what is the appropriate
decimal number? It turns out that this is much more nuanced. (Quick mental exercise: given
our discussion so far, how could we represent negative numbers in binary using only 0’s and 1’s?
Hard right?) Instead, we will zoom out to an abstract question: what can a number, specifically
bits, represent? For the purposes of this course, to summarize the fundamental concepts of number
representation into one sentence: bits are just bits. This seems like an obvious statement, but
let’s see what I mean by that:

If I ask you what the number 101012 is in decimal, anyone who had been exposed to binary
before this course would automatically say, ”Oh! That’s 21 obviously! 1 + 4 + 16 = 21”. This
could be right, but it also could not. The underlying assumption made here was that you saw that
sequence of 5 bits and translated it using the unsigned interpretation. However, nowhere did
I mention to interpret it that way; we all jump to that conclusion because that’s how we’ve been
exposed to bits before 61C.

What am I trying to say here? Never assume anything. If you see a binary number, the first
question you should ask yourself is ”how should I interpret this?” The 6 numeric interpretations we
learn in class were:

1. Unsigned

2. Sign and Magnitude

3. One’s Complement

4. Two’s Complement

5. Biased

6. Floating Point



1.4. NUMBER REPRESENTATION 5

Floating point is like the weird cousin, so we will revisit that later. Below I will give a quick
runthrough of the first five (assuming we’re working in base 2):

Interpretation Representable Range (n bit number) Lowest Highest
Unsigned [0, 2n − 1] 00..00 11...11

Sign and Magnitude [−(2n−1 − 1), 2n−1 − 1] 11...11 01...11
One’s Complement [−(2n−1 − 1), 2n−1 − 1] 10...00 01...11
Two’s Complement [−2n−1, 2n−1 − 1] 10...00 01...11

Biased [bias, 2n − 1 + bias] 00...00 11...11

To convert from each representation to decimal has its own special set of rules. Let’s look at
how to interpret the 5 bit number 101012. (Following the nomenclature of working with bits, when
we refer to the most significant bit (MSB), we are referring to the leftmost bit, and the least
significant bit (LSB) is the rightmost. We also 0-index from right to left, so the LSB is bit 0
and the MSB is bit n− 1 for an n bit number):

1. Unsigned Rule: (2n−1 ∗ bn−1) + (2n−2 ∗ bn−2) + · · ·+ (21 ∗ b1) + (20 ∗ b0)

101012 : (24 ∗ 1) + (23 ∗ 0) + (22 ∗ 1) + (21 ∗ 0) + (20 ∗ 1) = 16 + 0 + 4 + 0 + 2 = 21

.

2. Sign and Magnitude Rule: Repeat process for unsigned on bottom n − 1 bits, if the MSB is
1, number is negative, else positive.

101012 : (23 ∗ 0) + (22 ∗ 1) + (21 ∗ 0) + (20 ∗ 1) = 0 + 4 + 0 + 1 = 5→ 5 ∗ −1 = −5

since the MSB is 1.

Note: one of the weaknesses of sign and magnitude is the existence of 2 0’s: 00 . . . 00 and
10 . . . 00.

3. One’s Complement: A good trick from converting from one’s complement to decimal is to
look at the MSB. If it is a 0, do the method for unsigned interpretation. If it is a 1, simply
flip the bits and interpret it using the unsigned method to get the magnitude, but keep in
mind that the sign is negative.

Note: similar to sign and magnitude, one’s complement has the weakness of 2 0’s: 00 . . . 00
and 11 . . . 11.

10101→ 01010 = 23 + 21 = 10→ −10

4. Two’s Complement: (−2n−1 ∗ bn−1) + (2n−2 ∗ bn−2) + · · ·+ (21 ∗ b1) + (20 ∗ b0)

Note the negative, which only applies to the MSB. Therefore, if the MSB is 0, the conversion
would be the same as the unsigned method.

10101 : (−24 ∗ 1) + (22 ∗ 1) + (20 ∗ 1) = −11



6 CHAPTER 1. NUMBERS

If you don’t want to deal with negatives, a trick for getting the magnitude of a two’s comple-
ment number is flipping the bits and adding 1 (this is very similar to the one’s complement
method). Don’t forget that if the MSB of the original number is a 1, slap on the negative.

10101→ 01010 + 1 = 01011 = 23 + 21 + 20 = 11→ −11

5. Bias: All bias does is shift the range of the unsigned interpretation. So, take the unsigned
interpretation and add the bias to get the final result: actual number = unsigned + bias.

You may notice that sometimes, we choose very specific biases. This can be understood
through the lens of representable ranges. The unsigned range of 5 bits is [0, 2n − 1] = [0, 31].
It is useful, in many scenarios, to shift this range so we have an almost equal number of
positive and negative values, so let’s shift our range by a number that will allow this: −15! If
we say our bias is −15, then our new range becomes [0− 15, 31− 15] = [−15, 16]. Generally,
for an n bit number, we choose the bias to be −2n−1 − 1 to even out the range of positive
and negative numbers.

1.4.1 ASCII

Following the theme of bits just being bits, it is worth noting that since everything in your code
has to reduce down to bits, how do we convert things that are not integers to numbers? To take
it even one step further, not only does all data need to become binary, but your code itself is data
that needs to be converted as well! Stay tuned, we will get to all of this, but for now, let’s talk
about how some people decided to resolve this problems for strings as an interesting use case.

Essentially, some people got together and decided, ”Hey, let’s just create a mapping from letters
to numbers that everyone can agree on!” That’s it. The ASCII table is just a chosen mapping from
characters to numbers. There are other encodings as well, such as Unicode, but the core idea is the
same: we just needed a way to convert from strings to numbers and visa versa.

So at the lowest levels, when your computer sees strings, it’s actually just seeing bits, not able
to know if those bits were originally a number or a letter. Yet everything works beautifully. Such
is the power of AbStRaCtIoN.



1.5. BRINGING EVERYTHING TOGETHER 7

Figure 1.2: A portion of the ASCII table

1.5 Bringing Everything Together

By now, I hope some questions are floating in your mind. Who handles all this interpretation?
Which interpretation does my computer actually do? What is happening?

Well, the intricacies of this delve more into how processors work and are designed, which we
will delve into later, but one fascinating thing to note is that 2’s complement is the standard for
a beautiful reason: Regardless of the interpretation, doing simple binary addition or
subtraction will give us the correct result. Let’s see what I mean:

I want to add 2 binary numbers: 100112 and 010012. This gives me 111002. Ok, great. Now,
I will tell you that you should interpret it as unsigned numbers. Let us check to see if the math
makes sense:

100112 + 010012 = 111002 → 19 + 9 = 28

Thank you unsigned interpretation, very cool! Moving on to 2’s complement:

100112 + 010012 = 111002 → −13 + 9 = −4

Wow! This nice property does not work for other interpretations such as sign and magnitude
or one’s complement, and this simplicity is why all integers on modern computers are stored as 2’s
complement, signed numbers.



8 CHAPTER 1. NUMBERS

You may have seen different primitive types of numbers in your coding career: long, short, int,
and the unsigned versions of all of these. Now you can understand what these mean: long is just
more bits so we can store larger numbers, short is less bits, and int is the standard 32 bits in most
machines. If you precede any of these types with ”unsigned”, the computer will interpret it via
unsigned interpretation instead of 2’s complement!

1.6 Bitwise Operations

Built into many modern programming languages are bitwise operations. There are 2 properties
worth mentioning:

1. 0 & b will ”mask” the b by always making the result 0. We can use this to isolate bits:

111111&0010000 = 0010000

2. 0 | b will allow b to fall through by always making the result b:

111111|0010000 = 1111111

In addition, let’s briefly go over shifting:
If we shift a number left, we pad it on the right with 0’s:
11...11 << 1 = 11...10
On the other hand, if we shift a number to the right, what we pad it with is dependent on the

type of shift:

1. Arithmetic shift: pad the left with the MSB: 11...11 >> 1 = 11...11

2. Logical shift: pad the left with 0s: 11...11 >> 1 = 01...11

In other words, arithmetic shifting preserves the sign while logical shifting does not. For a
review of the relationship between sign extending and preserving the sign of a number, run through
an example, interpreting the numbers as two’s complement numbers. It’s an excellent exercise with
a nice result.

1.7 Extra Section (not in scope)

These are dumb things I thought of while writing this to keep me entertained. Enjoy:

1. The old school rapper: Notorious B.I.T

2. The newest mumble rapper: Lil’ Bit

3. ”How are you so optimistic and positive all the time? You remind me of an unsigned num-
ber...”

4. Lil Pump’s new catchphrase: ASCII-tet

5. Breakup phrase: ”I think I can describe our current relationship in 16 bits, cuz I’mma cut it
SHORT right now”



1.7. EXTRA SECTION (NOT IN SCOPE) 9

6. Pickup phrase: ”Ey bb I wanna declare us with 64 bits cuz I can see us together for a LONG
time”

7. I just liked this meme I found:

Figure 1.3: What interpretation did this meme creator assume?


