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Deep Onet Review

A DeepOnet is a mappingO : C(Td;Rda) → C(Td;Rdv) of the form

O(a)(x) =
p∑

k=1

βk(a(x1), . . . , a(xp))τk(x), (1)

where βi : Rm×da → Rp×du and τj : Rd → Rp are the branch and trunk networks,
respectively.

The function a is evaluated at some discrete sensor points x1, . . . , xm.
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DeepONet Architecture

https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/
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DeepONet Approximation Theorem
Theorem (Universal Operator Approximation)
Suppose that X is a Banach space, K1 ⊂ X,K2 ⊂ Rd are two compact sets in X and Rd, respectively,
V is a compact set in C (K1) . Assume that G : V → C (K2) is a nonlinear continuous operator. Then,
for any ϵ > 0, there exist positive integers m, p, continuous vector functions g : Rm → Rp, f : Rd → Rp,
and x1, x2, . . . , xm ∈ K1, such that,∣∣∣∣∣∣∣G(u)(y)− ⟨g (u (x1) , u (x2) , · · · , u (xm))︸ ︷︷ ︸

branch

, f(y)︸︷︷︸
trunk

⟩

∣∣∣∣∣∣∣ < ϵ

• An integral is an example of an operator G acting on function u evaluated at y in
G(u)(y)

• The loss function is the mean squared error (m.s.e.) between the true value of
G(u)(y) and the network prediction for the input ([u (x1) , u (x2) , . . . , u (xm)] , y).

• DeepONet is a high-level architecture without defining the specific
architectures of the inner trunk and branch nets
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Sensor Points in ONets

1. The choice of sensor points
x1, . . . , xm is chosen beforehand.

2. We are fixed to the sensor points
once we have chosen them. All input
functions must be evaluated at the
same sensors

3. Problem: The choice of these points
is arbitrary. Can we algorithmically
find a better set of sensors?

4. Solution: Treat them like
hyperparameters

Figure: While we can probe the solution G(u) at any
point y, all input functions must be evaluated at the
sensors x
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Sensors as Hyperparameters

For an O-Net parameterzied by θ, fθ optimized via gradient descent, we can nest its
learning process into an outer hyper-optimization that can find a better set of
sensors to probe inputs at:

min
x

L

u(x), y, θ − η∇θL(u(x), y, θ)︸ ︷︷ ︸
learning steps to optimize fθ


In practice: let the inner optimization run for a few steps, optimize the sensors, and
repeat.
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Algorithm Considerations

1. Complexity: The nested optimization scales in resources with the number of
inner optimization steps taken. However, approximations leveraging the Implicit
Function Theorem1 allow us to let the process unroll for much longer at a
reasonable cost.

2. Generalization: While a generally ’optimal’ set of sensors may exist, we believe it
is more useful to constrain the O-Net to learn from a family of related PDE
problems s.t. the learned sensors can reasonably generalize.

3. Implications: The learned sensors can be used in the O-Net to solve a PDE, but
only up to a certain timestep. We can also investigate the quality of the sensors
on the same problem solved by a standard PDE solver.

1Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters by
Implicit Differentiation. 2019. arXiv: 1911.02590 [cs.LG].
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Steady-state Diffusion PDE
On the unit square, Ω = [0, 1]2,

−∇ · (κ(x, y)∇u) = f, (2)

with u(∂Ω) = 0, and f ≡ 1. Randomly generate κ(x, y) with Simplex noise.

κ(x, y) u(x, y)
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Experiment Setup

1. 200 outer epochs

2. 50 inner epochs

3. ADAM optimizes the O-Net

4. RMSProp optimizes the sensors

5. Inner loss on train set

6. Outer loss on validation set

7. Nested hypergradient requires an inverse Hessian that we approximate with a
Neumann series with 3 terms

8. Clip the new sensor points to ensure they’re inside the domain
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MSE Loss

We compute the mean-squared-error between the ONet evaluated at a uniform set
of points (not sensor points), and the interpolated true solution from a PDE solver

ℓ :=
1

B
1

N

B∑
b=1

N∑
i=1

(
N (κ)(xi, yi)− u(xi, yi)

)2
,

whereN is our learned ONet operating on κ(x, y).
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Loss History
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Optimized points

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Reference sensor points

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Optimized sensor points

Group 1 Optimizing Sensor Points in Deep Operator Nets May 2, 2023 12 / 12


	DeepOnets

