
Kobuki Kart
Grant Wang

grant.wang5@berkeley.edu
Nick Riasanovsky

njriasanovsky@berkeley.edu
Rehan Durrani

rdurrani@berkeley.edu
Sean Farhat

s.farhat-sabet@berkeley.edu

I. OVERVIEW

The goal of this project was to implement a live action
version of the popular Nintendo game Mario Kart [1]. In doing
so, we decided to use the Joy-Con [2], Nintendo’s proprietary
controller for the Nintendo Switch, as our controller, since the
newest version of Mario Kart is played with this. Additionally,
due to our experience using the Kobuki robots in lab, we opted
to use them as our Karts. In order to create an experience
resembling Mario Kart as much as possible, we needed to
create a smooth driving experience, which differed greatly
from the static movement from labs. Finally, we wanted to
include characteristic gameplay features, such as hazards and
power-ups that can impact yourself or others.

Our work this semester is likely beneficial to anyone trying
to produce a live action racing game. This could be especially
useful for anyone attempting to make an AR version of a
racing game, which we did not attempt given the content of
the class and time constraints of the project, but would enable
much easier visual identifiers of in-game events.

II. GAME MECHANICS

The game we designed consists of a track and 1-3 Kobukis.
Each Kobuki has a DWM1001C tag for localization, a
WS2812B LED strip to display powerups and hazards, and
is controlled by a JoyCon controller. The players use their
Kobukis to navigate the track and compete to see who can
finish first. The track has three elements - a red shell location,
a mushroom location, and a banana location. The red shell is a
peer-to-peer powerup. When a Kobuki passes by it, it recieves
the red shell powerup. When it is used, it targets the nearest
Kobuki and causes it to spin for 5 seconds. The mushroom is
a normal powerup. Using it allows the Kobuki to speed up.
The banana is a hazard - when a Kobuki passes by it, it spins
for 5 seconds. After a powerup is taken, it cannot be received
by another Kobuki for 5 seconds. After being triggered, the
hazard is inactive for 10 seconds.

III. SYSTEM DESIGN

Our system consists of Joy-Cons for users to enter inputs, a
single Raspberry Pi to serve as an aggregator and coordinator,
and a series of Karts, consisting of the Kobuki, a Berkeley
Buckler mounted on an NRF52832 (for the rest of this paper,
we will refer to this combo as just the Buckler for brevity), a
Decawave DWM1001C Tag, and a WS2812B LED strip. To
interact with our system, the user manipulates their Joy-Con,
which pushes its data to the Raspberry Pi over Bluetooth clas-
sic. The Raspberry Pi maintains Bluetooth Low-Energy (BLE)

Fig. 1. Diagram of the system architecture, black boxing each component.
For simplicity the Kobuki is not shown.

connections to each of the Bucklers to forward information
about events such as hazards to the Kart. The connections
also route information from the Buckler back to the Pi
about powerup usage and location information. The Buckler
maintains a SPI connection with the DWM1001C to obtain
location information, a GPIO connection with the WS2812B
to trigger the lights for visual effects, and a connection over an
RS232 serial port to the Kobuki for setting the wheel speeds. A
diagram of this architecture is shown in Figure 1. We will now
discuss the Joy-Con, Raspberry Pi, and Kart in more detail.

For visual diagrams of our system, please refer to our poster.

A. Joy-Con

The Joy-Con [2] is the primary controller for the Nintendo
Switch. It connects to devices over the HID interface using
Bluetooth classic. It packages information in 12 byte packets,
which we converted into 2 byte packets containing only the
information about which buttons were pressed.

B. Raspberry Pi

The Raspberry Pi is the coordinator and master node for our
system. It serves two important purposes: providing a bridge
between the Joy-Cons and the Bucklers, and working with a
global view of the system.

To accomplish this, the Raspberry Pi runs three types of
processes. The first type is as a Bluetooth Endpoint, which
mediates between between the JoyCon and Bucklers, since
the former communicates through Bluetooth Classic, while the
latter uses BLE. Upon receiving button inputs, it has to forward
this information to the Buckler via the second type of process.

The second type is as a BLE Endpoint which maintains
one service per Buckler and keeps characteristics as specified
below:

1) PI → Buckler
Joycon button information
Powerup received
Hazard received

https://drive.google.com/file/d/1TJDwyn6IQgzIs01Zx96hlcQnIdia1698/view?usp=sharing

Fig. 2. Image of the Kobuki with all peripherals attached.

2) Buckler → PI
Location information
Use powerup

By receiving locations from the Bucklers, it serves as the
provider for the last process, where all powerup/hazard logic
can be done.

The last type, the Aggregator process, keeps track of where
everything is, which it receives from the BLE Endpoint:
powerups, hazards, and Karts. Upon a Buckler entering within
a specified distance from a powerup/hazard, it will communi-
cate that information to the BLE Endpoint, which forwards that
to the appropriate characteristic (powerup or hazard received).
When a Buckler wishes to use a peer-to-peer powerup, the
Aggregator uses its location data to find the nearest neighbor
to the initiating Buckler, and sends it a hazard. There is
one Aggregator for the whole system whereas there is one
Bluetooth and BLE endpoint per user. All communication
between these types of processes is done through TCP sockets.

C. Kart
The Kobuki, as shown in Figure 2, serves as our Kart and is

controlled by a Buckler mounted on top of it over an RS232
serial port. A DWM 1001C tag is connected to the Buckler
over SPI, and a WS2812B LED strip is connected to the
Buckler over GPIO. The physical SPI connection between
the Buckler and DWM 1001C is formed via connection of
the 3.3V power, GND, Chip Select, Clock, MISO, and MOSI
pins on both the Buckler and DWM 1001C tag. The WS2812B
LED strips come with 3 wires that are connected to the 5V
power, GND, and GPIO Pin3 on the Buckler.

Our overall software architecture on the Buckler can be
summarized as follows. We first initialize a BLE profile on the
Buckler with a service containing the 5 characteristics listed
in Figure 1 and Part III-B.

We then utilize the Simple BLE C library [3] to handle
the initialization code on the Buckler, and the bluepy python
module [4] to read and write characteristics onto the Raspberry
Pi. Then, we initialize the DWM 10001C tag for localization
and the WS2812B LED strip for visual feedback.

Once initialization is complete, the Buckler code will issue
a request to the DWM1001C tag for location data of the
Kobuki’s current position, which is done every 0.5s. This is
done by, via the Decawave Firmware API [5], the following
sequence of messages over an initialized SPI connection:

1) Send 2 byte sequence [0x02, 0x00] to request location
2) DWM ACKs by responding with tuple (size per trans-

mission, number of transmissions). These values will be
0x00 until the return data is ready, upon which they will
be updated.

3) Buckler polls DWM for (size, num transmissions) tuple
until they have non-zero values, and then requests size
data from the DWM when the data is ready.

4) DWM sends over location data in the form of a 3-tuple
(x, y, z) in millimeters w.r.t a fixed (0, 0, 0) setup by
anchor network

We perform Step 1 at the start of our main loop before
evaluating our FSM and Steps 3 and 4 after evaluation, so
that the tag is given the time it takes to evaluate our FSM to
produce the data, and so less time is spent busy looping in the
polling stage.

The location information from the DWM is then later sent
to the Raspberry Pi from the Buckler via the location BLE
characteristic notification. The Raspberry Pi will infer whether
there is a powerup, hazard, or nothing at the Buckler’s current
location, and write to the appropriate characteristic if either
a powerup or hazard is present. Concurrently, the Buckler
receives writes to the button characteristic from the Raspberry
Pi, which will determine what velocity and acceleration to
apply to both wheels of the Kobuki as it moves via a
hierarchical FSM. When the Buckler receives a powerup or
hazard from the Raspberry Pi, it will alter the model dynamics
by triggering transitions to new states of the FSM.

Lastly, the WS2812B LED strips are used for visual feed-
back. Updating the colors on the LED requires a series of
24 high pulses on the data signal line that map to 24 bits.
Each LED pixel color is encoded as 3 LED brightness values
(red, green, blue) and each brightness value is encoded as a
sequence of 8 bits in GRB order, hence 24 bits total. The
specifications of the WS2812B [6] require a 1.25µs period,
and each high pulse encodes one bit. A pulse of 0.9µs
represents a 1 bit, while a pulse of 0.35µs represents a 0 bit.
Following this specification, we send a PWM signal from the
Buckler over GPIO to the data input of the LED strip using
the Nordic SDK PWM Driver. We tuned the PWM signal to
have a period of 1.25 µs by using a clock frequency of 0.8
kHz on the NRF52832, and use a duty cycle of 28% for a 1
bit, and 72% for a 0 bit.

IV. COURSE OBJECTIVES

A. Networking

Our project encapsulates two networking concepts - Blue-
tooth Low Energy and SPI. We use Bluetooth Low Energy
to communicate information via characteristics between the
Buckler and the Raspberry Pi. We use one service per Buckler.
The Pi writes to the powerup recieved, hazard recieved,
and control characteristics, which the Buckler reads from,
and the Buckler writes to the location and powerup used
characteristics, which the Pi reads from.

We also use Serial Peripheral Interface to communicate
with the DWM1001C Tag for locationing. The Tag can be

communicated with over BLE, UART, and SPI, but we decided
to utilize SPI since we were concerned about the lossiness
of BLE connections, and the number of connections that the
Buckler would have to maintain. The Buckler connects to the
Tag as the Master, and sends Type-Length-Value Requests to
the Tag. We specify the algorithm to query the Tag in Part
III-C.

The process of setting up SPI, from making the physical
connections from the pins of the Buckler to the pins of the Tag,
as well as reading about and experimenting with the protocol
to communicate encapsulates the Networking portion of the
course.

B. Modeling Physical Dynamics

Making the Kart drive in a way analagous to Mario Kart’s
mechanics required a design that allowed for dynamic changes
to each wheels’ speed. Therefore, we modelled the dynamics
via two FSMs, a velocity FSM (V-FSM) and a turning FSM
(T-FSM), which, when composed, make up a hierarchical
state machine that accepts button presses and powerup/hazard
notifications as inputs and outputs wheel speeds, as seen in
Figure 3.

The V-FSM centers around a continuous variable, v, rep-
resenting the total velocity we wish to provide to the Kart.
v is updated each step via the X-button providing a forward
acceleration to v̇, the B-button providing a backwards acceler-
ation, or no button input allowing v to decay to 0. Therefore,
the button presses can be utilized to speed, brake, and reverse
from any direction. If the Kart receives a Mushroom powerup
notification, then the FSM transitions to a 3-state sequence of
v first becoming a constant high value, then decaying to the
original max velocity, then returning to the normal logic.

The v from the V-FSM is fed into the T-FSM, which
distributes the total v among the wheels, depending on which
direction the analog stick is pointed in, given by the directional
inputs. For example, if we want to turn a hard left, then we will
put 0.6v into the right wheel and 0.4v into the left. If the Kart
receives a hazard notification, either by running over a banana
or being hit by a red shell, then the v input is completely
ignored, and we transition to a Hazard state that will stop
the Kart, have it rotate for 5 seconds in place, then return to
whatever it was doing. The ouptut of the T-FSM are speeds for
each wheel, which are passed into the KobukiDriveDirect(left,
right) function.

To see powerups and hazards in action, please see this video.

C. Concurrency

Our project contains concurrency components on both the
kart and the Raspberry Pi. On the kart because we do
not have access to threading - our two main concurrency
mechanisms are polling and interrupts. We use polling to
regulate the frequency at which we send and wait for location
information, and we use interrupts for receiving data from
BLE characteristics. The Raspberry Pi does have access to
a Linux based operating system so we have more traditional
concurrency mechanisms. We use the fork syscall to spawn

unique processes for each user. Additionally we use pthreads
to spawn a new thread to a do a polling read for location
information and a mutex to provide atomicity guarantees when
the location data is used for determining power-up locations
or the nearest neighbor.

D. Sensors and Actuators

By using a DWM 1001C as a sensor and WS2812B LED
strip as an actuator, our system bridges the cyber and physical
realms, a key theme introduced in this course. Key features
of the DWM 1001C include a 3-axis accelerometer and UWB
antenna. These hardware modules allow the DWM 1001C tag
to interface with the real world by taking tilt measurements
to determine its acceleration and send/receive ultrawide band
signals from nearby anchors. Combining these sensor mea-
surements, the DWM 1001C tag can localize itself within the
anchor network and output a position value. Localization relies
heavily on precise sensor data, and we demonstrate its usage
as a key component of our project.

Driving the WS2812B LED strip via a PWM also addresses
the class topic of bridging the cyber and physical realms.
LEDs are introduced in this course as devices that require
actuation. With PWM, we apply an electrical signal (a physical
element) to control the RGB color bit sequence (a cyber
element) and actuate the LED diodes. The PWM period and
duty cycle values had to be precisely calibrated to match the
LED specifications, a design issue that often has to be dealt
with when working with sensors and actuators. Furthermore,
actuating the LEDs provides a nice visual feedback in the
physical world for users.

V. SYSTEM EVALUATION

To assess our system we opted to evaluate the scalability
in terms of Raspberry Pi compute time. For all tests we ran
our system but replaced our controllers with a simple socket
server running on the Raspberry Pi, to ensure more consistent
timing. If given more time we also would have evaluated the
accuracy of our location data but were unable to do so because
the anchor network was deconstructed.

Additionally while we did not conduct a formal user survey,
the few individuals who tested our project did note that they
were impressed with how smooth the driving of the Kobukis
were. Users also noted how they enjoyed the dynamics of
the powerups and hazards, along with the visual feedback
from the LEDs. However, some users reported that the power-
ups were sometimes inconsistent, turning could be tricky,
and that the lag between button presses was noticeable, but
not meaningfully so, with two Kobukis but interfered with
gameplay at three Kobukis.

A. Raspberry Pi Compute Time

We evaluated the amount of compute necessary to run
our system using the Linux tool vmstat [7]. We tracked
the percentage of CPU time spent in either kernel or user
space without running our system, as well as with 1, 2, or
3 controllers connected. Then we repeated the experiment

https://youtu.be/yJh9LbyZXWw

Fig. 3. Finite State Machine Modelling Movement Dynamics

of Kobukis Button Press Mean % CPU SD %
0 no 2.6949 1.3561
1 no 26.9831 .8334
1 yes 27.0678 .7561
2 no 51.6102 1.0053
2 yes 51.6102 .6643
3 no 75.8983 1.2715
3 yes 75.8305 .9234

TABLE I
RASPBERRY PI COMPUTE TIME

having the controller provide button presses every 2 seconds.
Our results are shown in Table I.

Our results indicate a near linear scaling as we increase the
number of users. It becomes clear that we would reach 100%
utilization with 4 connected users. This means we cannot
expect to have 4 users (which is the maximum set by bluetooth
connections) and that the performance loss experienced at 3
users is likely due to the Raspberry Pi as a central bottleneck.

VI. ANALYSIS OF SUCCESS

Overall we believe that we succeeded with most of what we
intended for this project. We were able to create a Kart that
drives smoothly, place track events on the ground that could
be triggered by location and introduce power-ups that work
in a peer to peer context using location. Additionally, while
we noticed increased lag as we integrated 3 karts, the lag was
tolerable for 2 karts, and so we met our scalability target for
this project. One of the biggest reasons for our success was
the modular nature of our project. Although the Raspberry Pi
was a central bottleneck for testing, we were able to easily
integrate modular testing of new components. Some examples
of this were adding individual characteristics where we could
add a single component at a time, such as when we started
sending location data, and because we had a lot of spare real
estate on our control to implement testing features.

However despite our overall success, when we began this
project we had some additional goals we were unable to
accomplish. The first was that we initially intended to have
more exact power-up and hazard markers, marking almost
exactly where they could be acquired. Unfortunately we found
that the location data provided by the DWM1001C was too
noisy to be able to do this reliably and that our power-ups

would always move slightly. This is not necessarily a bad
game mechanic as it adds some randomness, but it was not
what we originally intended. We also were unable to complete
our stretch goal, which was maintaining a race leader board
and a subsequent power-up. This proved to be too difficult in
the time allotted because the location data could not be used
to map out a track without a change of coordinate system.
When coupled with the noise in the location data we could not
construct an accurate enough model of the track to implement
a leaderboard.

VII. CONCLUSION

In our project, we attempted to recreate the popular video
game, Mario Kart. Fortunately, this allowed us to leverage
multiple topics from what we learned in EECS 149: Net-
working by communicating with devices via interfaces such as
BLE, SPI, and GPIO, Modelling Dynamics via a hierarchical
FSM that allowed for smooth driving, Concurrency via several
simultaneous Karts driving at the same time and the load bal-
ancing of communication lines required, Sensors by utilizing
DWM tags to get the locations of Karts, powerups, and hazards
that allowed for interactive gameplay, and Actuators by using
LED strips to notify players of powerups and hazards. By
touching on a myriad of topics, we were able to delve further
into the subject matter and apply our knowledge to create
a robust codebase for anyone to leverage to build their own
improved Kobuki-racing system.

REFERENCES

[1] Nintendo. (2019) Mario Kart 8 Deluxe for Nintendo
Switch. [Online]. Available: https://www.nintendo.com/games/detail/
mario-kart-8-deluxe-switch/

[2] ——. (2019) Technical Specs. [Online]. Available: https://www.nintendo.
com/switch/tech-specs/

[3] N. Jackson. (2019-8-28) Simple BLE. [Online]. Available: https:
//github.com/lab11/nrf52x-base/blob/master/lib/simple ble/README.md

[4] I. Harvey. (2014) bluepy - a Bluetooth LE Interface for Python. [Online].
Available: https://ianharvey.github.io/bluepy-doc/

[5] Decawave. (2019) DWM1001 Firmware Application Programming
Interface (API) Guide. [Online]. Available: https://www.decawave.com/
wp-content/uploads/2019/01/DWM1001-API-Guide-2.2.pdf

[6] Worldsemi. WS2812B Intelligent control LED integrated light source.
[Online]. Available: https://cdn-shop.adafruit.com/datasheets/WS2812B.
pdf

[7] H. Ware and F. Frédérick. (2011-9) VMSTAT(8) Linux Manual Page.
[Online]. Available: http://man7.org/linux/man-pages/man8/vmstat.8.html

https://www.nintendo.com/games/detail/mario-kart-8-deluxe-switch/
https://www.nintendo.com/games/detail/mario-kart-8-deluxe-switch/
https://www.nintendo.com/switch/tech-specs/
https://www.nintendo.com/switch/tech-specs/
https://github.com/lab11/nrf52x-base/blob/master/lib/simple_ble/README.md
https://github.com/lab11/nrf52x-base/blob/master/lib/simple_ble/README.md
https://ianharvey.github.io/bluepy-doc/
https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-API-Guide-2.2.pdf
https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-API-Guide-2.2.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
http://man7.org/linux/man-pages/man8/vmstat.8.html

	Overview
	Game Mechanics
	System Design
	Joy-Con
	Raspberry Pi
	Kart

	Course Objectives
	Networking
	Modeling Physical Dynamics
	Concurrency
	Sensors and Actuators

	System Evaluation
	Raspberry Pi Compute Time

	Analysis of Success
	Conclusion
	References

