Universal approximation and error bounds for Fourier Neural Operators

Nicolas Nytko, Sean Farhat, Nathanael Assefa

April 25, 2023

- **1. [Definition of Fourier Neural Operators](#page-2-0)**
- **2. [Universal Approximation Theorem](#page-10-0)**
- **3. [Comparison to DeepOnets](#page-15-0)**
- **4. [Stationary Darcy Flow](#page-17-0)**
- **5. [Incompressible Navier-Stokes](#page-20-0)**

Problem Setting

- *•* Operators are *maps between function spaces*.
- *•* Say we are working in some subspace *D ⊂ R^d* .
- $\bullet\;$ Let $\mathcal{A}(D;\mathbb{R}^{d_a})$ and $\mathcal{U}(D;\mathbb{R}^{d_u})$ be spaces of functions from D to \mathbb{R}^{d_a} and $\mathbb{R}^{d_u},$ respectively.
- *•* Want to learn some *G* that maps from *A* to *U*.
	- *•* Why?
	- *•* Example: PDEs. Map from a right-hand-side to a solution function.

Neural Operator

For some $a \in \mathcal{A}$, we can define a Neural Operator like

$$
\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{L}_L \circ \mathcal{L}_{L-1} \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{R}(a). \tag{1}
$$

Where

$$
\mathcal{R}: \mathcal{A} \to \mathcal{U}(D;\mathbb{R}^{d_v}),\tag{2}
$$

$$
\mathcal{Q}: \mathcal{U}(D;\mathbb{R}^{d_v}) \to \mathcal{U}(D;\mathbb{R}^{d_u}).
$$
\n(3)

We use $\mathcal R$ to "lift" $a(x)$ to $\mathbb R^{d_v},$ then $\mathcal Q$ to "project" to $\mathbb R^{d_u}.$ Assume $d_v \ge d_u.$ These are linear mappings on the function output *a*(*x*).

"L" layers in Neural Operator

$$
\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{L}_L \circ \mathcal{L}_{L-1} \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{R}(a)
$$

The layers *Li* are learned non-linear layers,

$$
\mathcal{L}_i(v)(x) = \sigma\bigg(W_i v(x) + b_i(x) + \big(\mathcal{K}(a; \theta_i)v\big)(x)\bigg). \tag{4}
$$

Left terms are affine transform, right term is integral operator

$$
\left(\mathcal{K}(a;\theta_i)v\right)(x) = \int_D \kappa_\theta(x,y,a(x),a(y))v(y) \, dy. \tag{5}
$$

Convolutional Operator

If instead we parameterize *κ^θ* like

$$
\kappa_{\theta}(x-y),\tag{6}
$$

we can instead write *K* as

$$
\left(\mathcal{K}(a;\theta_i)v\right)(x) = \int_D \kappa_\theta(x-y)v(y) \, dy. \tag{7}
$$

This is exactly a convolution, so we can speed it up via the Fourier Transform.

Fourier Neural Operator

Define *F* as the operator mapping from *Rd^v* to Fourier space, with *F [−]*¹ denoting its inverse. We get,

$$
\big(\mathcal{K}(a;\theta_i)v\big)(x) = \mathcal{F}^{-1}\big(P_{\theta}(k) \cdot \mathcal{F}(v)(k)\big)(x),\tag{8}
$$

so we can compute the kernel K as a pointwise multiplication with a learnable matrix $P_{\theta}(k) \in \mathbb{C}^{d_v \times d_v}$.

 \implies $P_{\theta}(k) = \mathcal{F}(\kappa_{\theta})(k).$

Implementation with Discrete Fourier Transform

Exact Fourier transform is difficult to compute in practice (requires integration), approximate with discrete Fourier transform; denote by Ψ-spectral FNO.

$$
\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{I}_N \circ \mathcal{L}_L \circ \mathcal{I}_N \circ \mathcal{L}_{L-1} \circ \mathcal{I}_N \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{I}_N \circ \mathcal{R}(a)
$$

The *IN* term is a *pseudo-spectral projection* onto a finite trigonometric polynomial, interpolates exactly at some set of gridpoints.

For numerical implementation, Ψ-spectral FNO can be thought of as the mapping

 $\widehat{\mathcal{N}}: \mathbb{R}^{d_a \times \mathcal{J}_N} \to \mathbb{R}^{d_u \times \mathcal{J}_N},$

where functions are evaluated on the grid $\{x_j\}_{j\in\mathcal{J}_N},$ $\mathcal{J}_N:=\{0,\ldots,2N\}^d$

Can alternatively denote Ψ-spectral FNO by

$$
\widehat{\mathcal{N}}(a) = \widehat{\mathcal{Q}} \circ \widehat{\mathcal{L}}_L \circ \widehat{\mathcal{L}}_{L-1} \circ \cdots \circ \widehat{\mathcal{L}}_1 \circ \widehat{\mathcal{R}}(a),
$$

where functions denoted by $\hat{\cdot}$ are discrete evaluations on some sample points.

Measuring size of Ψ*−***FNO**

For a Ψ*−*FNO *N*ˆ , grid points *JN, |JN|* = (2*N* + 1)*^d* , and *L* layers,

$$
\text{size}(\mathcal{N}) = \underbrace{d_u d_v}_{Q} + L \left(\underbrace{d_v^2}{W_{\ell}} + \underbrace{d_v|\mathcal{J}_N|}_{b_{\ell}} + \underbrace{d_v^2|\mathcal{J}_N|}_{P_{\theta}}\right) + \underbrace{d_a d_v}_{R}
$$

(9)

Mini-intro to functional analysis

Definition (Sobolev Space)

A vector space of functions, $\mathit{W}^{k,p}(\cdot)$, whose weak partial derivatives up to degree k exist, and are square integrable $(L^2).$

Special case $k=2$: $H(\mathbb{T}^d)^p = \, W(\mathbb{T}^d)^{2,p}$, nice properties with Fourier modes.

$$
||v||_{H^{p}}^{2} = \frac{(2\pi)^{d}}{2} \sum_{k \in \mathbb{Z}^{d}} (1 + |k|^{2p}) ||\hat{v}_{k}||^{2} < \infty
$$

for Fourier coefficients ˆ*vk*.

Universal Approximation Theorem

(Theorem 2.5)

Theorem (Universal Approximation)

For $s,s'\geq 0$, any continuous operator $\mathcal{G}:H^s(\mathbb{T}^d;\mathbb{R}^{d_a})\to H^{s'}(\mathbb{T}^d;\mathbb{R}^{d_u}),$ and compact s ubset of functions $K\subset H^{s}(\mathbb{T}^{d};\mathbb{R}^{d_{a}});$ for any $\varepsilon>0$ there exists some FNO $\mathcal N$ such *that*

$$
\sup_{a\in K} \|\mathcal{G}(a) - \mathcal{N}(a)\|_{H^{s'}} \leq \varepsilon.
$$

Given a large class of operators, in theory* there is always an FNO that approximates this set to desired accuracy *ε*

Universal Approximation Sketch

(Theorem 2.5)

Theorem (Universal Approximation)

The main objective is thus to prove Theorem 2.5 for the special case $s' = 0$ *; i.e. given* a continuous operator $\mathcal{G}: H^s\left(\mathbb{T}^d\right) \to L^2\left(\mathbb{T}^d\right), K \subset H^s\left(\mathbb{T}^d\right)$ compact, and $\epsilon >0$, we wish to construct a $\text{FNO}\,\mathcal{N}: H^s\left(\mathbb{T}^d\right) \to L^2\left(\mathbb{T}^d\right)$, such that $\sup_{a \in K} ||\mathcal{G}(a) - \mathcal{N}(a)||_{L^2} \leq \epsilon$

To this end, we start by defining the following operator,

$$
\mathcal{G}_N: H^s\left(\mathbb{T}^d\right) \to L^2\left(\mathbb{T}^d\right), \quad \mathcal{G}_N(a) := P_N \mathcal{G}\left(P_N a\right)
$$

with *P^N* being the orthogonal Fourier projection operator

Universal Approximation Theorem Proof

(2.5 Proof) We circumvent the later transforms by composing with an additional inverse FNO layer $\mathcal{L}: L^2 \to H^{s'}$ satisfying the identity $\mathcal{L}(v) = \mathcal{L}\left(P_N v\right)$ for all v , and defining a continuous operator $\emph{H}^{\emph{s}'}\rightarrow\emph{H}^{\emph{s}'}$, such that

$$
\sup_{v \in K'} \| P_N v - \widetilde{\mathcal{L}}(v) \|_{H^{s'}} \le \delta
$$

Next, we define a new FNO by the composition $\mathcal{N}:=\mathcal{L}\circ\mathcal{N}:$ $H^s\to H^{s'}\mathcal{N}$ is a $\text{\texttt{continuous}}$ operator $\textit{H}^s \rightarrow \textit{H}^{s'}$, since it can be

Theorem

Proof [written as the composition]

$$
H^s \stackrel{\widetilde{\mathcal{N}}}{\longrightarrow} L^2 \stackrel{P_N}{\longrightarrow} H^{s'} \stackrel{\widetilde{\mathcal{L}}}{\longrightarrow} H^{s'}
$$

Given a large class of operators, in theory* there is always an FNO that approximates this set to desired accuracy *ε*

Remark on super-exponential scaling

(Remark 3.1)

We can construct an FNO approximating an operator *G* like

$$
\mathcal{N}:=\mathcal{N}_{\text{IFT}}\circ\tilde{\mathcal{N}}\circ\mathcal{N}_{\text{FT}},
$$

where \mathcal{N}_{FT} , \mathcal{N}_{FT} are the inverse and regular fourier transform approximations, respectively, and $\tilde{\mathcal{N}}:\mathbb{R}^{2\mathcal{K}_N}\to \mathbb{R}^{2\mathcal{K}_N}$ is a neural network operating on Fourier space.

N denotes the number of Fourier coefficients, function of desired accuracy *ε*. Assuming Lipschitz continuity and that our input function lies in $a \in K \subset H^s,$ the width of $\tilde{\mathcal{N}}$ scales asymptotically like

$$
\textsf{width}(\tilde{\mathcal{N}})\gtrsim \epsilon^{-\epsilon^{-d/s}}
$$

Deep Onet Review

A DeepOnet is a mapping $\mathcal{O}:C(\mathbb{T}^d;\mathbb{R}^{d_a})\rightarrow C(\mathbb{T}^d;\mathbb{R}^{d_v})$ of the form

$$
\mathcal{O}(a)(x) = \sum_{k=1}^{p} \beta_k(a(x_1), \dots, a(x_p)) \tau_k(x), \qquad (10)
$$

 ω where $\beta_i: \mathbb{R}^{m \times d_a} \to \mathbb{R}^{p \times d_u}$ and $\tau_j: \mathbb{R}^d \to \mathbb{R}^p$ are the *branch* and *trunk* networks, respectively.

The function *a* is evaluated at some discrete *sensor points x*1*, . . . , xm*.

A Ψ*−*FNO is a specific formulation of the branch and trunk networks for a DeepOnet.

Theorem (Approximation of Ψ*−*FNO by DeepOnet)

Let $\hat{\mathcal{N}}:L^2_N(\mathbb{T}^d;\mathbb{R}^{d_a})\to L^2_N(\mathbb{T}^d;\mathbb{R}^{d_u})$ be a Ψ —FNO. For any $\varepsilon>0$ and fixed $B>0$, there *is a DeepOnet with equi-spaced sensor points x*1*, . . . , xm; arbitrary branch net β, and trunk net τ that by construction approximates some orthonormal trigonometric basis. We can bound the error between them like*

$$
\sup_{\|a\|_{L^{\infty}}\leq B}\sup_{y\in\mathbb{T}^d}\left|\hat{\mathcal{N}}(a)(y)-\sum_{k=1}^p\beta_k(a)\tau_k(y)\right|\leq \varepsilon
$$

The width and depth of the branch-net is equal to that of $\hat{\mathcal{N}}$. However, the size of $\hat{\mathcal{N}}$ is much smaller than that of the branch and trunk networks (of the constructed emulator).

Stationary Darcy Flow

$$
-\nabla \cdot (a\nabla u) = f. \tag{11}
$$

On a periodic domain \mathbb{T}^d , and assuming that our solution has zero mean.

(Figure is not the same problem)

¹Physics-Informed Deep Neural Operator Networks, Goswami et al.

$$
-\nabla \cdot (a\nabla u) = f. \tag{11}
$$

We will impose that $\int_{\mathbb{T}^d} f\,dx = \int_{\mathbb{T}^d} u\ dx = 0,$ such that the RHS and solution have zero mean. Let $a=1+\tilde{a}$, for $\tilde{a}\in H^s(\mathbb{T}^d),$ $s>d/2.$ Clasically, we solve the Fourier-Galerkin approximation,

$$
-\dot{P}_N \nabla \cdot ((1 + \dot{P}_N \mathcal{I}_{2N} \tilde{a}) \nabla u_N) = \dot{P}_N \mathcal{I}_{2N} f, \tag{12}
$$

on an equispaced, regular grid $\{x_j\}_{j\in\mathcal{J}_{2N}}.$

Want to use Ψ*−*FNO to approximate

$$
\mathcal{G}: L^{\infty}(\mathbb{T}^d) \to H^1(\mathbb{T}^d)
$$
\n
$$
\mathcal{G}: a \mapsto u
$$
\n(13)

Approximation by Ψ*−***FNO**

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0*,* $k \in \mathbb{N}$, and an Ψ −FNO $\hat{\mathcal{N}} : H^s(\mathbb{T}^d) \rightarrow H^1(\mathbb{T}^d)$ such that

$$
\operatorname{\mathit{depth}}(\hat{\mathcal{N}})\leq C\log(N),\quad\operatorname{\mathit{lift}}(\hat{\mathcal{N}})\leq C,\quad\operatorname{\mathit{width}}(\hat{\mathcal{N}})\leq C N^d
$$

such that

$$
\sup_{a\in H^s} \|\mathcal{G}(a) - \hat{\mathcal{N}}(a)\|_{H^1(\mathbb{T}^d)} \leq C N^{-k}
$$

Incompressible Navier-Stokes

$$
\frac{\partial u}{\partial t} + u \cdot \nabla u + \nabla p - \nu \nabla^2 u = 0 \tag{15}
$$

$$
\nabla \cdot u = 0 \tag{16}
$$

$$
u_0 = u(t = 0).
$$
 (17)

 $^{\rm 2}$ Fourier Neural Operator for Parametric Differential Equations, Li et al.

Leray Projection

Definition (Leray Projector)

Let $\mathbb{P}: L^2(\mathbb{T}^d;\mathbb{R}^d) \to \dot{L^2}(\mathbb{T}^d;\mathsf{div})$ be the L^2- orthogonal projector onto the set of functions with zero mean and no divergence. We can explicitly write the projection operator like

$$
\mathbb{P}\bigg(\sum_{k\in\mathbb{Z}^d}\hat{u}_ke^{i\langle k,x\rangle}\bigg)=\sum_{k\in\mathbb{Z}^d\backslash\{0\}}\Big(1-\frac{k\otimes k}{\|k\|^2}\Big)\hat{u}_ke^{i\langle k,x\rangle}.\tag{18}
$$

We can thus rewrite the Navier-Stokes equations as

$$
\frac{\partial u}{\partial t} = -\mathbb{P}(u \cdot \nabla u) + \nabla^2 u \tag{19}
$$

Discretization in Time (Classical Formulation)

We use an implicit Euler time discretization (with ∆*t >* 0), to get the recurrence

$$
\frac{u_N^{n+1} - u_N^n}{\Delta t} + \mathbb{P}_N(u_N^n \cdot \nabla u_N^{n+1}) = \nu \nabla^2 u_N^{n+1}.
$$
 (20)

With the initial condition $u_N^0 = {\cal I}_N u(t=0)$ projected onto the Fourier representation.

From CFD, we require that the CFL condition,

$$
(\Delta t) \|u_N^n\|_{L^\infty} N \le \frac{1}{2},\tag{21}
$$

is satisfied for convergence.

Fixed-Point Iteration

The update

$$
\frac{u_N^{n+1} - u_N^n}{\Delta t} + \mathbb{P}_N(u_N^n \cdot \nabla u_N^{n+1}) = \nu \nabla^2 u_N^{n+1}
$$
 (20)

is nonlinear, so to solve we re-cast as a fixed point iteration

$$
w_N \mapsto (1 - \nu(\Delta t)\nabla^2)^{-1}u_N^n - (\Delta t)(1 - \nu(\Delta t)\nabla^2)^{-1}\mathbb{P}_N(u_N^n \cdot \nabla w_N),\tag{22}
$$

repeatedly compute/update to get next timestep.

Approximation by Ψ*−***FNO**

Previous computations are *annoying*, can we approximate by FNO?

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0 *and an* Ψ*−FNO N*ˆ *such that*

$$
\operatorname{\mathit{depth}}(\hat{\mathcal{N}}), \operatorname{\mathit{lift}}(\hat{\mathcal{N}}) \leq C, \quad \operatorname{\mathit{width}}(\hat{\mathcal{N}}) \leq C N^d
$$

such that

$$
\|\mathbb{P}_N(u_N - \nabla w_N) - \hat{\mathcal{N}}(u_N, w_N)\|_{L^2_N} \leq \varepsilon.
$$

Nonlinearities can be approximated by pseudospectral FNOs!

Bibliography

- *•* **On Universal Approximation and Error Bounds for Fourier Neural Operators**, Nikola Kovachki, Samuel Lanthaler, Siddhartha Mishra
- *•* **Fourier Neural Operator for Parametric Partial Differential Equations**, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
- *•* **Physics-Informed Deep Neural Operator Networks**, Somdatta Goswami, Aniruddha Bora, Yue Yu, George Em Karniadakis

Fourier Neural Operator Architecture

<https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/>

DeepONet Architecture

<https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/>