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Problem Setting

• Operators aremaps between function spaces.
• Say we are working in some subspace D ⊂ Rd.
• LetA(D;Rda) and U(D;Rdu) be spaces of functions from D to Rda and Rdu ,

respectively.
• Want to learn some G that maps fromA to U .

• Why?
• Example: PDEs. Map from a right-hand-side to a solution function.
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Neural Operator

For some a ∈ A, we can define a Neural Operator like

N (a) = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a). (1)

Where

R : A → U(D;Rdv), (2)

Q : U(D;Rdv) → U(D;Rdu). (3)

We useR to “lift” a(x) to Rdv , thenQ to “project” to Rdu . Assume dv ≥ du.
These are linear mappings on the function output a(x).
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“L” layers in Neural Operator

N (a) = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a)

The layers Li are learned non-linear layers,

Li(v)(x) = σ

(
Wiv(x) + bi(x) +

(
K(a; θi)v

)
(x)

)
. (4)

Left terms are affine transform, right term is integral operator(
K(a; θi)v

)
(x) =

∫
D
κθ(x, y, a(x), a(y))v(y) dy. (5)
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Convolutional Operator

If instead we parameterize κθ like
κθ(x − y), (6)

we can instead writeK as(
K(a; θi)v

)
(x) =

∫
D
κθ(x − y)v(y) dy. (7)

This is exactly a convolution, so we can speed it up via the Fourier Transform.
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Fourier Neural Operator

Define F as the operator mapping fromRdv to Fourier space, with F−1 denoting its
inverse. We get, (

K(a; θi)v
)
(x) = F−1

(
Pθ(k) · F(v)(k)

)
(x), (8)

so we can compute the kernelK as a pointwise multiplication with a learnable matrix
Pθ(k) ∈ Cdv×dv .

=⇒ Pθ(k) = F(κθ)(k).
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Implementation with Discrete Fourier Transform

Exact Fourier transform is difficult to compute in practice (requires integration),
approximate with discrete Fourier transform; denote byΨ-spectral FNO.

N (a) = Q ◦ IN ◦ LL ◦ IN ◦ LL−1 ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R(a)

The IN term is a pseudo-spectral projection onto a finite trigonometric polynomial,
interpolates exactly at some set of gridpoints.
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For numerical implementation,Ψ-spectral FNO can be thought of as the mapping

N̂ : Rda×JN → Rdu×JN ,

where functions are evaluated on the grid {xj}j∈JN ,JN := {0, . . . , 2N}d

Can alternatively denoteΨ-spectral FNO by

N̂ (a) = Q̂ ◦ L̂L ◦ L̂L−1 ◦ · · · ◦ L̂1 ◦ R̂(a),

where functions denoted by ·̂ are discrete evaluations on some sample points.
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Measuring size of Ψ−FNO

For aΨ−FNO N̂ , grid points JN, |JN| = (2N + 1)d, and L layers,

size(N ) = dudv︸︷︷︸
Q

+L

 d2v︸︷︷︸
Wℓ

+ dv|JN|︸ ︷︷ ︸
bℓ

+ d2v|JN|︸ ︷︷ ︸
Pθ

+ dadv︸︷︷︸
R

(9)
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Mini-intro to functional analysis

Definition (Sobolev Space)

A vector space of functions, Wk,p(·), whose weak partial derivatives up to degree k
exist, and are square integrable (L2).

Special case k = 2: H(Td)p = W(Td)2,p, nice properties with Fourier modes.

‖v‖2Hp =
(2π)d

2

∑
k∈Zd

(1 + |k|2p)‖v̂k‖2 < ∞

for Fourier coefficients v̂k.
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Universal Approximation Theorem

(Theorem 2.5)

Theorem (Universal Approximation)

For s, s′ ≥ 0, any continuous operator G : Hs(Td;Rda) → Hs′(Td;Rdu), and compact
subset of functions K ⊂ Hs(Td;Rda); for any ε > 0 there exists some FNON such
that

sup
a∈K

‖G(a)−N (a)‖Hs′ ≤ ε.

Given a large class of operators, in theory* there is always an FNO that approximates
this set to desired accuracy ε
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Universal Approximation Sketch

(Theorem 2.5)

Theorem (Universal Approximation)

The main objective is thus to prove Theorem 2.5 for the special case s′ = 0; i.e. given
a continuous operator G : Hs (Td) → L2

(
Td) ,K ⊂ Hs (Td) compact, and ϵ > 0, we

wish to construct a FNON : Hs (Td) → L2
(
Td), such that

supa∈K ‖G(a)−N (a)‖L2 ≤ ϵ

To this end, we start by defining the following operator,

GN : Hs
(
Td

)
→ L2

(
Td

)
, GN(a) := PNG (PNa)

with PN being the orthogonal Fourier projection operator
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Universal Approximation Theorem Proof
( 2.5 Proof)We circumvent the later transforms by composing with an additional
inverse FNO layer L̃ : L2 → Hs′ satisfying the identity L̃(v) = L̃ (PNv) for all v, and
defining a continuous operator Hs′ → Hs′ , such that

sup
v∈K′

∥∥∥PNv − L̃(v)
∥∥∥

Hs′
≤ δ

Next, we define a new FNO by the compositionN := L̃ ◦ Ñ : Hs → Hs′ .N is a
continuous operator Hs → Hs′ , since it can be

Theorem
Proof [written as the composition]

Hs Ñ−→ L2 PN−→ Hs′ L̃−→ Hs′

Given a large class of operators, in theory* there is always an FNO that approximates
this set to desired accuracy ε
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Remark on super-exponential scaling

(Remark 3.1)
We can construct an FNO approximating an operator G like

N := NIFT ◦ Ñ ◦ NFT,

whereNIFT,NFT are the inverse and regular fourier transform approximations,
respectively, and Ñ : R2KN → R2KN is a neural network operating on Fourier space.

N denotes the number of Fourier coefficients, function of desired accuracy ε.
Assuming Lipschitz continuity and that our input function lies in a ∈ K ⊂ Hs, the
width of Ñ scales asymptotically like

width(Ñ ) ≳ ϵ−ϵ−d/s
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Deep Onet Review

A DeepOnet is a mappingO : C(Td;Rda) → C(Td;Rdv) of the form

O(a)(x) =
p∑

k=1

βk(a(x1), . . . , a(xp))τk(x), (10)

where βi : Rm×da → Rp×du and τj : Rd → Rp are the branch and trunk networks,
respectively.

The function a is evaluated at some discrete sensor points x1, . . . , xm.

AΨ−FNO is a specific formulation of the branch and trunk networks for a DeepOnet.
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Theorem (Approximation ofΨ−FNO by DeepOnet)

Let N̂ : L2
N(Td;Rda) → L2

N(Td;Rdu) be aΨ−FNO. For any ε > 0 and fixed B > 0, there
is a DeepOnet with equi-spaced sensor points x1, . . . , xm; arbitrary branch net β, and
trunk net τ that by construction approximates some orthonormal trigonometric
basis. We can bound the error between them like

sup
∥a∥L∞≤B

sup
y∈Td

∣∣∣∣N̂ (a)(y)−
p∑

k=1

βk(a)τk(y)
∣∣∣∣ ≤ ε

The width and depth of the branch-net is equal to that of N̂ . However, the size of N̂
is much smaller than that of the branch and trunk networks (of the constructed
emulator).
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Stationary Darcy Flow

−∇ · (a∇u) = f. (11)

On a periodic domain Td, and assuming that our solution has zero mean.

1

(Figure is not the same problem)

1Physics-Informed Deep Neural Operator Networks, Goswami et al.
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−∇ · (a∇u) = f. (11)

We will impose that
∫
Td f dx =

∫
Td u dx = 0, such that the RHS and solution have zero

mean. Let a = 1 + ã, for ã ∈ Hs(Td), s > d/2. Clasically, we solve the Fourier-Galerkin
approximation,

−ṖN∇ · ((1 + ṖNI2Nã)∇uN) = ṖNI2Nf, (12)

on an equispaced, regular grid {xj}j∈J2N .

Want to useΨ−FNO to approximate

G : L∞(Td) → H1(Td) (13)

G : a 7→ u (14)
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Approximation by Ψ−FNO

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0,
k ∈ N, and anΨ−FNO N̂ : Hs(Td) → H1(Td) such that

depth(N̂ ) ≤ C log(N), lift(N̂ ) ≤ C, width(N̂ ) ≤ CNd

such that
sup
a∈Hs

‖G(a)− N̂ (a)‖H1(Td) ≤ CN−k
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Incompressible Navier-Stokes

∂u
∂t + u · ∇u +∇p − ν∇2u = 0 (15)

∇ · u = 0 (16)

u0 = u(t = 0). (17)

2

2Fourier Neural Operator for Parametric Differential Equations, Li et al.
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Leray Projection

Definition (Leray Projector)

Let P : L2(Td;Rd) → L̇2(Td;div) be the L2−orthogonal projector onto the set of
functions with zero mean and no divergence. We can explicitly write the projection
operator like

P
( ∑

k∈Zd

ûkei⟨k,x⟩
)

=
∑

k∈Zd\{0}

(
1− k ⊗ k

‖k‖2
)

ûkei⟨k,x⟩. (18)

We can thus rewrite the Navier-Stokes equations as

∂u
∂t = −P(u · ∇u) +∇2u (19)
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Discretization in Time (Classical Formulation)

We use an implicit Euler time discretization (with∆t > 0), to get the recurrence

un+1
N − un

N
∆t + PN(un

N · ∇un+1
N ) = ν∇2un+1

N . (20)

With the initial condition u0
N = INu(t = 0) projected onto the Fourier representation.

From CFD, we require that the CFL condition,

(∆t)‖un
N‖L∞N ≤ 1

2
, (21)

is satisfied for convergence.
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Fixed-Point Iteration

The update
un+1

N − un
N

∆t + PN(un
N · ∇un+1

N ) = ν∇2un+1
N (20)

is nonlinear, so to solve we re-cast as a fixed point iteration

wN 7→ (1− ν(∆t)∇2)−1un
N − (∆t)(1− ν(∆t)∇2)−1PN(un

N · ∇wN), (22)

repeatedly compute/update to get next timestep.

Group 1 FNO Analysis April 25, 2023 24 / 28



Approximation by Ψ−FNO

Previous computations are annoying, can we approximate by FNO?

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0 and
anΨ−FNO N̂ such that

depth(N̂ ), lift(N̂ ) ≤ C, width(N̂ ) ≤ CNd

such that
‖PN(uN −∇wN)− N̂ (uN,wN)‖L2

N
≤ ε.

Nonlinearities can be approximated by pseudospectral FNOs!
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Fourier Neural Operator Architecture

https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/
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DeepONet Architecture

https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/
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