Universal approximation and error
bounds for Fourier Neural Operators

Nicolas Nytko, Sean Farhat, Nathanael Assefa

April 25, 2023



Overview

1. Definition of Fourier Neural Operators
2. Universal Approximation Theorem

3. Comparison to DeepOnets

4. Stationary Darcy Flow

5. Incompressible Navier-Stokes

Group 1 FNO Analysis April 25, 2023 2/28



Problem Setting

Operators are maps between function spaces.
* Say we are working in some subspace D C R%.
Let A(D;R%) and U(D;R%) be spaces of functions from D to R% and R,
respectively.
Want to learn some G that maps from A to U.
® Why?
® Example: PDEs. Map from a right-hand-side to a solution function.
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Neural Operator

For some a € A, we can define a Neural Operator like

N(a)=QoLroLr 10---0L;0R(a). )

Where
R:A— UD;RY), (2)
Q : U(D;R%) — U(D; R%). (3)

We use R to “lift” a(z) to R%, then Q to “project” to R%. Assume d, > d,.
These are linear mappings on the function output a(z).
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“L” layers in Neural Operator

N(a)=QoLpoLy 10---0L10R(a)

The layers L; are learned non-linear layers,

Li(v)(z) = 0<Wiv($) + bi(z) + (K(a; 0;)v) (x)) (4)
Left terms are affine transform, right term is integral operator

(K(a:0:)0) () = /D s (2 v, a(2), () o(y) dy. (5)
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Convolutional Operator

If instead we parameterize kg like
KQ(x - y)7 (6)

we can instead write K as

(K 0:)0) () = / oz — g)(y) dy. M

D

This is exactly a convolution, so we can speed it up via the Fourier Transform.
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Fourier Neural Operator

Define F as the operator mapping from R% to Fourier space, with F~! denoting its
inverse. We get,

(KC(a: 03)v) (2) = F~*(Po(k) - F(0)(R)) (), (8)

so we can compute the kernel K as a pointwise multiplication with a learnable matrix
Pg(k) € Choxdv,

= Py(k) = F(ko)(k).
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Implementation with Discrete Fourier Transform

Exact Fourier transform is difficult to compute in practice (requires integration),
approximate with discrete Fourier transform; denote by W-spectral FNO.

N(a)=QoZIyoLpoZIyoL 10Zyo---0Li0LyoR(a)

The Zy term is a pseudo-spectral projection onto a finite trigonometric polynomial,
interpolates exactly at some set of gridpoints.
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For numerical implementation, ¥-spectral FNO can be thought of as the mapping
_/(\/‘ - RaxIN _y RuXIN

where functions are evaluated on the grid {z;} jc 7., Jn := {0, ...,2N}¢

Can alternatively denote W-spectral FNO by
N(a)=QoLpoLy 10---0LoR(a),

where functions denoted by ~ are discrete evaluations on some sample points.
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Measuring size of V—FNO

For a W—FNO \/, grid points Jy, |7v| = (2N + 1), and L layers,

size(N) = dyd, +L | & + do|TIn| + E|TN| | + dud, (9)
Q

W, be Py R
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Mini-intro to functional analysis

Definition (Sobolev Space)

A vector space of functions, W*?(-), whose weak partial derivatives up to degree &
exist, and are square integrable (Z?).

Special case k = 2: H(T%)? = W(T%)??, nice properties with Fourier modes.

(2m)¢ .
loll7 = = >+ )] < oo

keZd

for Fourier coefficients ;.
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Universal Approximation Theorem

(Theorem 2.5)

Theorem (Universal Approximation)

For s, s > 0, any continuous operator G : H*(T% R%) — H* (T% R%), and compact
subset of functions K C H*(T% R%); for any € > 0 there exists some FNO N such
that

sup |9(a) — N (@)l v < .

aEK

Given a large class of operators, in theory* there is always an FNO that approximates
this set to desired accuracy ¢
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Universal Approximation Sketch

(Theorem 2.5)

Theorem (Universal Approximation)

The main objective is thus to prove Theorem 2.5 for the special case § = 0; i.e. given
a continuous operator G : H* (T%) — L* (T%) , K ¢ H° (T?) compact, and e > 0, we
wish to construct a FNON : H* (T4) — L? (T?), such that

sup,ek [|G(a) — N(a)||f2 <€

To this end, we start by defining the following operator,
G : H° (Td> 12 (’]I‘d> . Gn(a) == PyG (Pya)

with Py being the orthogonal Fourier projection operator
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Universal Approximation Theorem Proof
(2.5 Proof) We circumvent the later transforms by composing with an additional
inverse FNO layer £ : L2 — H¥ sahsfylng the identity £(v) = L (Pyv) for all v, and
defining a continuous operator B — H*, such that

’PN'U—E(’U)‘ <4

HY

sup
veK’

Next, we define a new FNO by the composition N/ := LoN:H — H' Nisa
continuous operator H* — H* , since it can be

Theorem
Proof [written as the composition]

w2 Py £op

Given a large class of operators, in theory* there is always an FNO that approximates

this set to desired accuracy ¢
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Remark on super-exponential scaling

(Remark 3.1)
We can construct an FNO approximating an operator G like

N = Nir o N o N,

where Nr, NVer are the inverse and regular fourier transform approximations,
respectively, and A : R2X~ — R2Kx js g neural network operating on Fourier space.

N denotes the number of Fourier coefficients, function of desired accuracy ¢.
Assuming Lipschitz continuity and that our input functionliesina € K C H®, the
width of A/ scales asymptotically like

d/s

width(N) > e
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Deep Onet Review

A DeepOnet is a mapping O : O(T¢; R4%) — C(T% R%) of the form
p
O(a)(z) =Y Bilal(m),- ... alzy))mi(a), (10)
k=1
where j3; : R™* % _, RP*du gnd T R¢ — R? are the branch and trunk networks,
respectively.

The function ais evaluated at some discrete sensor points zy, . . ., z,.

A U—FNO is a specific formulation of the branch and trunk networks for a DeepOnet.
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Theorem (Approximation of W—FNO by DeepOnet)

Let N : L3(T%R%) — L3/(T%R%) be a W—FNO. For any e > 0 and fixed B > 0, there
is a DeepOnet with equi-spaced sensor points i, . . ., x,; arbitrary branch net 3, and
trunk net T that by construction approximates some orthonormal trigonometric
basis. We can bound the error between them like

p
(a)(g) - Zﬂkwm(y)' <-
k=1

sup  sup
llall oo <B yeTd

The width and depth of the branch-net is equal to that of A/. However, the size of A’
is much smaller than that of the branch and trunk networks (of the constructed
emulator).
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Stationary Darcy Flow

—V - (aVu) = f. (11)

On a periodic domain T¢, and assuming that our solution has zero mean.

Truth DeepONet dgFNO+ POD-DeepONet
1 1 1

y W W W N

0 05 1 o 05 1
Boundary Error

o 05 1

(Figure is not the same problem)

Physics-Informed Deep Neural Operator Networks, Goswami et al.
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-V - (aVu) = f. (1)

We will impose that [, fdz = [}, u dz =0, such that the RHS and solution have zero
mean. Let a = 1 + @, for @ € H*(TY), s > d/2. Clasically, we solve the Fourier-Galerkin
approximation, ‘ ' ‘

— PNV - ((1 + PNIQNa)VUN) = PnZonf, (12)

on an equispaced, regular grid {z;}jc 7, -
Want to use Y —FNO to approximate

G : L>°(T%) — HY(T? (13)
G:a—u (14)
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Approximation by V—FNO

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0,
ke N, andan U—FNO N : H¥(T94) — H'(T9) such that

depth(N) < Clog(N), lift(N) < C, width(N) < CN?
such that

sup [1G(a) — K ()l 1 ray < ON™*

a€ H®
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Incompressible Navier-Stokes

gt—i-u Vu+Vp—vViu=0 (15)
V-u=0 (16)
ug = u(t=0). (7

Initial Vortmty

Prediction

2Fourier Neural Operator for Parametric Differential Equations, Li et al.
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Leray Projection

Definition (Leray Projector)

Let P : L2(T% R%) — L2(T¢; div) be the L2—orthogonal projector onto the set of
functions with zero mean and no divergence. We can explicitly write the projection

operator like
p( 3 d,ge«m) = X (1- o). (18)

kezd keZA\{0}

We can thus rewrite the Navier-Stokes equations as

ou

T _P(y- 2 1
5 (u-Vu)+ Vu (19)
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Discretization in Time (Classical Formulation)

We use an implicit Euler time discretization (with At > 0), to get the recurrence
unJrl —
NTtN + Py(ufy - Vuitt) = vv2uitt. (20)

With the initial condition uN Inu(t = 0) projected onto the Fourier representation.

From CFD, we require that the CFL condition,

1

(A0 N < 5.

(21)

is satisfied for convergence.
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Fixed-Point Iteration

The update

unJr 1

_an
NTtUN + Py(uly - Vulil) = pv2gn! (20)
is nonlinear, so to solve we re-cast as a fixed point iteration

wy = (1= v(AYVH Tl — (A (1 — v(AYV?) T Py(uly - V), (22)

repeatedly compute/update to get next timestep.
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Approximation by V—FNO

Previous computations are annoying, can we approximate by FNO?

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0 and
an W—FNO N such that

depth(N), lift(N) < C, width(N') < CN?

such that

IPn(un — Vun) — N (un, wy)ll gz <e.

Nonlinearities can be approximated by pseudospectral FNOs!
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Fourier Neural Operator Architecture

INPUT
(Example:
Spatial data)

Neural net

o O l

OUTPUT
(Spatial data for the next steps)

https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/
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DeepONet Architecture

BRANCH NET

FINAL
RESULT

o) i
o4

Calculated
independently
using traditional

solvers to train

OUTPUT: the network
10 Qutput 10 Possible
spatial TRUNK NET functions

coordinates

https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/
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