Universal approximation and error bounds for Fourier Neural Operators

Nicolas Nytko, Sean Farhat, Nathanael Assefa

April 25, 2023

- **1. Definition of Fourier Neural Operators**
- 2. Universal Approximation Theorem
- 3. Comparison to DeepOnets
- 4. Stationary Darcy Flow
- 5. Incompressible Navier-Stokes

Problem Setting

- Operators are maps between function spaces.
- Say we are working in some subspace $D \subset R^d$.
- Let $\mathcal{A}(D; \mathbb{R}^{d_a})$ and $\mathcal{U}(D; \mathbb{R}^{d_u})$ be spaces of functions from D to \mathbb{R}^{d_a} and \mathbb{R}^{d_u} , respectively.
- Want to learn some ${\mathcal G}$ that maps from ${\mathcal A}$ to ${\mathcal U}.$
 - Why?
 - Example: PDEs. Map from a right-hand-side to a solution function.

Neural Operator

For some $a \in \mathcal{A}$, we can define a Neural Operator like

$$\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{L}_L \circ \mathcal{L}_{L-1} \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{R}(a).$$
⁽¹⁾

Where

$$\mathcal{R}: \mathcal{A} \to \mathcal{U}(D; \mathbb{R}^{d_v}), \tag{2}$$

$$\mathcal{Q}: \mathcal{U}(D; \mathbb{R}^{d_v}) \to \mathcal{U}(D; \mathbb{R}^{d_u}).$$
(3)

We use \mathcal{R} to "lift" a(x) to \mathbb{R}^{d_v} , then \mathcal{Q} to "project" to \mathbb{R}^{d_u} . Assume $d_v \geq d_u$. These are linear mappings on the function output a(x).

"L" layers in Neural Operator

$$\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{L}_L \circ \mathcal{L}_{L-1} \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{R}(a)$$

The layers \mathcal{L}_i are learned non-linear layers,

$$\mathcal{L}_{i}(v)(x) = \sigma \bigg(W_{i}v(x) + b_{i}(x) + \big(\mathcal{K}(a;\theta_{i})v\big)(x)\bigg).$$
(4)

Left terms are affine transform, right term is integral operator

$$\left(\mathcal{K}(a;\theta_i)v\right)(x) = \int_D \kappa_\theta(x, y, a(x), a(y))v(y) \, dy.$$
(5)

Convolutional Operator

If instead we parameterize κ_{θ} like

$$\kappa_{\theta}(x-y),$$
 (6)

we can instead write ${\cal K}$ as

$$\left(\mathcal{K}(a;\theta_i)v\right)(x) = \int_D \kappa_\theta(x-y)v(y) \, dy. \tag{7}$$

This is exactly a convolution, so we can speed it up via the Fourier Transform.

Fourier Neural Operator

Define \mathcal{F} as the operator mapping from \mathcal{R}^{d_v} to Fourier space, with \mathcal{F}^{-1} denoting its inverse. We get,

$$\left(\mathcal{K}(a;\theta_i)v\right)(x) = \mathcal{F}^{-1}\left(P_{\theta}(k) \cdot \mathcal{F}(v)(k)\right)(x),\tag{8}$$

so we can compute the kernel \mathcal{K} as a pointwise multiplication with a learnable matrix $P_{\theta}(k) \in \mathbb{C}^{d_v \times d_v}$.

 $\implies P_{\theta}(k) = \mathcal{F}(\kappa_{\theta})(k).$

Implementation with Discrete Fourier Transform

Exact Fourier transform is difficult to compute in practice (requires integration), approximate with discrete Fourier transform; denote by Ψ -spectral FNO.

$$\mathcal{N}(a) = \mathcal{Q} \circ \mathcal{I}_N \circ \mathcal{L}_L \circ \mathcal{I}_N \circ \mathcal{L}_{L-1} \circ \mathcal{I}_N \circ \cdots \circ \mathcal{L}_1 \circ \mathcal{I}_N \circ \mathcal{R}(a)$$

The \mathcal{I}_N term is a *pseudo-spectral projection* onto a finite trigonometric polynomial, interpolates exactly at some set of gridpoints.

For numerical implementation, Ψ -spectral FNO can be thought of as the mapping

$$\widehat{\mathcal{N}}: \mathbb{R}^{d_a \times \mathcal{J}_N} \to \mathbb{R}^{d_u \times \mathcal{J}_N},$$

where functions are evaluated on the grid $\{x_j\}_{j \in \mathcal{J}_N}, \mathcal{J}_N := \{0, \dots, 2N\}^d$

Can alternatively denote Ψ -spectral FNO by

$$\widehat{\mathcal{N}}(a) = \widehat{\mathcal{Q}} \circ \widehat{\mathcal{L}}_L \circ \widehat{\mathcal{L}}_{L-1} \circ \cdots \circ \widehat{\mathcal{L}}_1 \circ \widehat{\mathcal{R}}(a),$$

where functions denoted by $\widehat{\cdot}$ are discrete evaluations on some sample points.

Measuring size of $\Psi-\mathrm{FNO}$

For a Ψ -FNO $\hat{\mathcal{N}}$, grid points $\mathcal{J}_N, |\mathcal{J}_N| = (2N+1)^d$, and L layers,

$$\mathsf{size}(\mathcal{N}) = \underbrace{d_u d_v}_Q + L \left(\underbrace{d_v^2}_{W_\ell} + \underbrace{d_v |\mathcal{J}_N|}_{b_\ell} + \underbrace{d_v^2 |\mathcal{J}_N|}_{P_\theta}\right) + \underbrace{d_a d_v}_R$$

(9)

Mini-intro to functional analysis

Definition (Sobolev Space)

A vector space of functions, $W^{k,p}(\cdot)$, whose weak partial derivatives up to degree k exist, and are square integrable (L^2) .

Special case k = 2: $H(\mathbb{T}^d)^p = W(\mathbb{T}^d)^{2,p}$, nice properties with Fourier modes.

$$\|v\|_{H^p}^2 = rac{(2\pi)^d}{2} \sum_{k \in \mathbb{Z}^d} (1+|k|^{2p}) \|\hat{v}_k\|^2 < \infty$$

for Fourier coefficients \hat{v}_k .

Universal Approximation Theorem

(Theorem 2.5)

Theorem (Universal Approximation)

For $s, s' \ge 0$, any continuous operator $\mathcal{G} : H^s(\mathbb{T}^d; \mathbb{R}^{d_a}) \to H^{s'}(\mathbb{T}^d; \mathbb{R}^{d_a})$, and compact subset of functions $K \subset H^s(\mathbb{T}^d; \mathbb{R}^{d_a})$; for any $\varepsilon > 0$ there exists some FNO \mathcal{N} such that

$$\sup_{a \in K} \left\| \mathcal{G}(a) - \mathcal{N}(a) \right\|_{H^{s'}} \le \varepsilon.$$

Given a large class of operators, in theory* there is always an FNO that approximates this set to desired accuracy ε

Universal Approximation Sketch

(Theorem 2.5)

Theorem (Universal Approximation)

The main objective is thus to prove Theorem 2.5 for the special case s' = 0; i.e. given a continuous operator $\mathcal{G} : H^s(\mathbb{T}^d) \to L^2(\mathbb{T}^d)$, $K \subset H^s(\mathbb{T}^d)$ compact, and $\epsilon > 0$, we wish to construct a FNO $\mathcal{N} : H^s(\mathbb{T}^d) \to L^2(\mathbb{T}^d)$, such that $\sup_{a \in K} \|\mathcal{G}(a) - \mathcal{N}(a)\|_{L^2} \leq \epsilon$

To this end, we start by defining the following operator,

$$\mathcal{G}_N: H^s\left(\mathbb{T}^d\right) \to L^2\left(\mathbb{T}^d\right), \quad \mathcal{G}_N(a):=P_N\mathcal{G}\left(P_Na\right)$$

with P_N being the orthogonal Fourier projection operator

Universal Approximation Theorem Proof

(2.5 Proof) We circumvent the later transforms by composing with an additional inverse FNO layer $\widetilde{\mathcal{L}}: L^2 \to H^{s'}$ satisfying the identity $\widetilde{\mathcal{L}}(v) = \widetilde{\mathcal{L}}(P_N v)$ for all v, and defining a continuous operator $H^{s'} \to H^{s'}$, such that

$$\sup_{v \in K'} \left\| P_N v - \widetilde{\mathcal{L}}(v) \right\|_{H^{s'}} \le \delta$$

Next, we define a new FNO by the composition $\mathcal{N} := \widetilde{\mathcal{L}} \circ \widetilde{\mathcal{N}} : H^s \to H^{s'}.\mathcal{N}$ is a continuous operator $H^s \to H^{s'}$, since it can be

Theorem

Proof [written as the composition]

$$H^s \xrightarrow{\widetilde{\mathcal{N}}} L^2 \xrightarrow{P_N} H^{s'} \xrightarrow{\widetilde{\mathcal{L}}} H^{s'}$$

Given a large class of operators, in theory* there is always an FNO that approximates this set to desired accuracy ε

Group 1

Remark on super-exponential scaling

(Remark 3.1)

We can construct an FNO approximating an operator ${\mathcal G}$ like

$$\mathcal{N}:=\mathcal{N}_{\mathsf{IFT}}\circ\tilde{\mathcal{N}}\circ\mathcal{N}_{\mathsf{FT}},$$

where \mathcal{N}_{IFT} , \mathcal{N}_{FT} are the inverse and regular fourier transform approximations, respectively, and $\tilde{\mathcal{N}} : \mathbb{R}^{2\mathcal{K}_N} \to \mathbb{R}^{2\mathcal{K}_N}$ is a neural network operating on Fourier space.

N denotes the number of Fourier coefficients, function of desired accuracy ε . Assuming Lipschitz continuity and that our input function lies in $a \in K \subset H^s$, the width of $\tilde{\mathcal{N}}$ scales asymptotically like

$$\mathsf{width}(ilde{\mathcal{N}})\gtrsim\epsilon^{-\epsilon^{-d/s}}$$

Deep Onet Review

A *DeepOnet* is a mapping $\mathcal{O}: C(\mathbb{T}^d; \mathbb{R}^{d_a}) \to C(\mathbb{T}^d; \mathbb{R}^{d_v})$ of the form

$$\mathcal{O}(a)(x) = \sum_{k=1}^{p} \beta_k(a(x_1), \dots, a(x_p))\tau_k(x),$$
 (10)

where $\beta_i : \mathbb{R}^{m \times d_a} \to \mathbb{R}^{p \times d_u}$ and $\tau_j : \mathbb{R}^d \to \mathbb{R}^p$ are the *branch* and *trunk* networks, respectively.

The function *a* is evaluated at some discrete *sensor points* x_1, \ldots, x_m .

A $\Psi-FNO$ is a specific formulation of the branch and trunk networks for a DeepOnet.

Theorem (Approximation of Ψ -FNO by DeepOnet)

Let $\hat{\mathcal{N}}: L^2_N(\mathbb{T}^d; \mathbb{R}^{d_a}) \to L^2_N(\mathbb{T}^d; \mathbb{R}^{d_u})$ be a Ψ -FNO. For any $\varepsilon > 0$ and fixed B > 0, there is a DeepOnet with equi-spaced sensor points x_1, \ldots, x_m ; arbitrary branch net β , and trunk net τ that by construction approximates some orthonormal trigonometric basis. We can bound the error between them like

$$\sup_{\|a\|_{L^{\infty}} \leq B} \sup_{y \in \mathbb{T}^d} \left| \hat{\mathcal{N}}(a)(y) - \sum_{k=1}^p eta_k(a) au_k(y)
ight| \leq arepsilon$$

The width and depth of the branch-net is equal to that of $\hat{\mathcal{N}}$. However, the size of $\hat{\mathcal{N}}$ is much smaller than that of the branch and trunk networks (of the constructed emulator).

Stationary Darcy Flow

$$-\nabla \cdot (a\nabla u) = f. \tag{11}$$

On a periodic domain \mathbb{T}^d , and assuming that our solution has zero mean.

(Figure is not the same problem)

¹Physics-Informed Deep Neural Operator Networks, Goswami et al.

Group 1

FNO Analysis

$$-\nabla \cdot (a\nabla u) = f. \tag{11}$$

We will impose that $\int_{\mathbb{T}^d} f \, dx = \int_{\mathbb{T}^d} u \, dx = 0$, such that the RHS and solution have zero mean. Let $a = 1 + \tilde{a}$, for $\tilde{a} \in H^s(\mathbb{T}^d)$, s > d/2. Clasically, we solve the Fourier-Galerkin approximation,

$$-\dot{P}_N \nabla \cdot \left((1 + \dot{P}_N \mathcal{I}_{2N} \tilde{a}) \nabla u_N \right) = \dot{P}_N \mathcal{I}_{2N} f, \tag{12}$$

on an equispaced, regular grid $\{x_j\}_{j \in \mathcal{J}_{2N}}$.

Want to use $\Psi-FNO$ to approximate

$$\mathcal{G}: L^{\infty}(\mathbb{T}^d) \to H^1(\mathbb{T}^d)$$
(13)

$$\mathcal{G}: a \mapsto u \tag{14}$$

Approximation by $\Psi-FNO$

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C > 0, $k \in \mathbb{N}$, and an Ψ -FNO $\hat{\mathcal{N}} : H^s(\mathbb{T}^d) \to H^1(\mathbb{T}^d)$ such that

$$depth(\hat{\mathcal{N}}) \leq C \log(N), \quad lift(\hat{\mathcal{N}}) \leq C, \quad width(\hat{\mathcal{N}}) \leq C N^d$$

such that

$$\sup_{a \in H^s} \|\mathcal{G}(a) - \hat{\mathcal{N}}(a)\|_{H^1(\mathbb{T}^d)} \le CN^{-k}$$

Incompressible Navier-Stokes

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + \nabla p - \nu \nabla^2 u = 0$$
(15)

$$\nabla \cdot u = 0 \tag{16}$$

$$u_0 = u(t=0).$$
 (17)

²Fourier Neural Operator for Parametric Differential Equations, Li et al.

Group 1

FNO Analysis

Leray Projection

Definition (Leray Projector)

Let $\mathbb{P}: L^2(\mathbb{T}^d; \mathbb{R}^d) \to \dot{L^2}(\mathbb{T}^d; \operatorname{div})$ be the L^2 -orthogonal projector onto the set of functions with zero mean and no divergence. We can explicitly write the projection operator like

$$\mathbb{P}\bigg(\sum_{k\in\mathbb{Z}^d}\hat{u}_k e^{i\langle k,x\rangle}\bigg) = \sum_{k\in\mathbb{Z}^d\setminus\{0\}} \left(1 - \frac{k\otimes k}{\|k\|^2}\right)\hat{u}_k e^{i\langle k,x\rangle}.$$
(18)

We can thus rewrite the Navier-Stokes equations as

$$\frac{\partial u}{\partial t} = -\mathbb{P}(u \cdot \nabla u) + \nabla^2 u \tag{19}$$

Discretization in Time (Classical Formulation)

We use an implicit Euler time discretization (with $\Delta t > 0$), to get the recurrence

$$\frac{u_N^{n+1} - u_N^n}{\Delta t} + \mathbb{P}_N(u_N^n \cdot \nabla u_N^{n+1}) = \nu \nabla^2 u_N^{n+1}.$$
 (20)

With the initial condition $u_N^0 = \mathcal{I}_N u(t=0)$ projected onto the Fourier representation.

From CFD, we require that the CFL condition,

$$(\Delta t) \|u_N^n\|_{L^\infty} N \le \frac{1}{2},\tag{21}$$

is satisfied for convergence.

Fixed-Point Iteration

The update

$$\frac{u_N^{n+1} - u_N^n}{\Delta t} + \mathbb{P}_N(u_N^n \cdot \nabla u_N^{n+1}) = \nu \nabla^2 u_N^{n+1}$$
(20)

is nonlinear, so to solve we re-cast as a fixed point iteration

$$w_N \mapsto (1 - \nu(\Delta t)\nabla^2)^{-1} u_N^n - (\Delta t)(1 - \nu(\Delta t)\nabla^2)^{-1} \mathbb{P}_N(u_N^n \cdot \nabla w_N),$$
(22)

repeatedly compute/update to get next timestep.

Approximation by $\Psi - FNO$

Previous computations are annoying, can we approximate by FNO?

Theorem (Existence of Discrete FNO)

Assuming activation is smoothly differentiable three times, there exists C>0 and an $\Psi-{\rm FNO}\,\hat{\mathcal{N}}$ such that

$$depth(\hat{\mathcal{N}}), lift(\hat{\mathcal{N}}) \leq C, \quad width(\hat{\mathcal{N}}) \leq CN^d$$

such that

$$\|\mathbb{P}_N(u_N - \nabla w_N) - \hat{\mathcal{N}}(u_N, w_N)\|_{L^2_N} \le \varepsilon.$$

Nonlinearities can be approximated by pseudospectral FNOs!

~					
 	r i	n		n	
-	• •	~	-	μ	

Bibliography

- On Universal Approximation and Error Bounds for Fourier Neural Operators, Nikola Kovachki, Samuel Lanthaler, Siddhartha Mishra
- Fourier Neural Operator for Parametric Partial Differential Equations, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
- **Physics-Informed Deep Neural Operator Networks**, Somdatta Goswami, Aniruddha Bora, Yue Yu, George Em Karniadakis

Fourier Neural Operator Architecture

 $\tt https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-than-ever-be$

Group 1	FNO Analysis	April 25, 2023	27/28

DeepONet Architecture

 $\tt https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-20210419/interval and the solve-worlds-hardest-equations-faster-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-before-than-ever-b$

Group 1