
Forced Alignment with Deep Convolutional Neural Networks

Sean Farhat

Abstract
In this report, we introduce a novel method for
Forced Alignment of audio transcripts using Con-
volutional Neural Networks. By examining neu-
ral network based methods for automatic speech
recognition (ASR), we realized that the reliance
of such models on the standard sequence-to-
sequence loss function, Connectionist Tempo-
ral Classification (CTC), prevents such networks
from achieving this task; instead, CTC’s main
benefit, being alignment-free, becomes the main
hindrance. By defining a 1-to-1 alignment for
input/output sequences, we were able to use the
Negative Log Likelihood instead, whose easily
interpretable nature allows for a Forced Align-
ment to be created. By utilizing a fully convo-
lutional model for transcription generation and
a word-boundary generator based solely off the
Levenshtein-distance and a pronunciation dic-
tionary, we achieve a highly efficient method
relative to comparable methods (DTW, HMM-
GMM/DNN, RNN) in addition to a low average
alignment error of 0.067 seconds on the TIMIT
dataset.

1. Introduction
The problem of forced alignment has been approached from
multiple angles, sometimes directly via methods such as
Dynamic Time Warping, yet mostly from the perspective
of a side effect of Automatic Speech Recognition (ASR):
Hidden Markov Models (and their hybird Gaussian Mixture
Models or Deep Neural Network variants), as well as re-
current models such as Recurrent Neural Networks, Gated
Recurrent Units, Long Short-Term Memory, and recently,
Transformers. These models explicity model each timestep
conditioned on the past and/or future, so a Forced Align-
ment could be easily generated as an interpretability step.
Some work has been done on convolutional models, yet
these have mostly been in tandem with recurrent models,
as they attempt to leverage the advantages of both (Gulati
et al., 2020).

While newer flavors of models for ASR follow a sequence-
to-sequence scheme as popularized in the Listen-Attend-

Spell architecture (Chan et al., 2015), classic models uti-
lized a loss and inference method known as Connectionist
Temporal Classificatiton (CTC) (Graves et al., 2006; Han-
nun, 2017). Since its inception, it has been ubiquitous for a
variety of sequence classification tasks, from ASR to hand-
writing recognition. In the realm of ASR, it has been es-
pecially useful given its versatility to work in the realm of
high level outputs such as characters instead of phonemes,
allowing it to be used with most datasets.

However, CTC’s alignment-free nature causes it to lack
interpretability, therefore preventing many models from ob-
taining a Forced Alignment or even working with standard
interpretability methods such as activation maps (Zhou et al.,
2016; Selvaraju et al., 2019) or saliency maps (Simonyan
et al., 2014).

We investigate CTC’s tradeoff on being alignment-free vs.
its saved cost in preprocessing, and how utilizing the TIMIT
dataset to create an optimal alignment allows us to leave
CTC behind, thus enabling faster traininig/inference in addi-
tion to being able to generate Forced Alignments and Class
Action Maps.

2. Motivation
For other Forced Alignment pipelines, the process usu-
ally starts with an existing ASR model and leveraging its
properties to extract the alignment. So, we will do the
same, but consider a CNN as the main underlying model
instead. We begin by considering the task of speech recog-
nition, which can formally defined as an instance of the
sequence classification problem: for a given input sequence
X = x1 . . . xn we want to know its corresponding output
sequence Y = y1 . . . ym, which contains labels from an
alphabet X .

2.1. Maximum Likelihood Expectation (MLE)

One approach to this problem is a conditionally indepen-
dent discriminative model, a notable assumption that differ-
entiates it from other popular methods such as HMM’s or
RNN’s. We generate a probability distribution P̂ (Y |X; θ) ∈
[0, 1]|X |×m. Training is equivalent to maximizing the prob-
ability of the correct output given the model and inputs; this
quantity is also known as the likelihood, hence the name

Forced Alignment with Deep Convolutional Neural Networks

Maximum Likelihood Estimation (MLE):

max
θ
P̂ (Y |X; θ) =

m∏
t=1

P̂t(yt|X; θ), Y = y1 . . . ym (1)

Inference comes from:

ŷt = argmax
yi

P̂t(yi|X; θ),∀t ∈ [1,m] (2)

To utilize popular descent methods as well as avoid nu-
merical underflow, instead of maximizing Equation 1, we
minimize its negative logarithm instead, hence the name
Negative Log Likelihood (NLL) Loss. From here onwards,
we will use the terms ”training” and ”aligning” interchange-
ably with regards to this problem, as we are intuitively
teaching the model to align the input sequence to its cor-
responding output sequence during training. In addition,
”alignment” will refer to the output of the model, Ŷ .

2.2. Connectionist Temporal Classification

A common case to consider is when the length of the input
and output differ, n 6= m, and no direct alignment between
X → Y exists, i.e. xi → yj ,∀i, j. For these instances, the
most common approach is a sequence-to-sequence model
that will generate P̂ ∈ [0, 1]|X |×n, that is a distribution with
respect to the length of the input, not the ouput, and use
Connectionist Temporal Classification (CTC) for training
and decoding. Below we will briefly cover the intuition
behind CTC and why it is not helpful for our purposes.

2.2.1. THE LOSS FUNCTION

As CTC functions with probabilistic models, it follows the
logical approach to maximize the likelihood of the desired
sequence. However, what makes this algorithm stand out is
its loose definition of “desired”; that is, CTC computes the
MLE over a set of length n sequences it refers to as “valid
alignments”.

To do so, CTC adds a blank label (−) to X , which the
model can learn to infer, but which is not present in any of
the training/test data. This character intuitively represents a
transition between labels in the sequence. It then defines a
collapsing function β : (X ∪ −)n → Xm which takes in a
sequence, collapses all repeats, then removes all blanks. So
the set of valid CTC alignments is formally defined as:

A = β−1(Y) (3)

and an illustrative description of β can be found in Figure 1.

CTC, as a loss function, is equivalent to NLL, except that
it sums over all valid alignments and treats them as equally
desirable outputs. Mathematically,

β

cat−−
caatt

cca− t
cat− t

c− a− t
−− cat

...

cat

catt

Figure 1. An illustration of CTC’s collapsing procedure for Y =
cat, |X| = 5. Every element that maps to cat is a valid alignment.
Its surjective nature hampers interpretability and adds computa-
tional complexity.

max
θ
P̂ (Y |X; θ) =

∑
A∈A

m∏
t=1

P̂t(at|X; θ), A = a1 . . . an

(4)

When implemented, the summation is intractable, so often
a Dynamic Programming approach is taken to reduce the
runtime.

2.2.2. INFERENCE

For inference, multiple heuristics can be chosen between.
One approach is to greedily take the argmax P̂t,∀t, similar
to Equation 2. However, this is not always optimal given
CTC’s conditional independence assumption. More likely,
a beam search is utilized in combination with a language
model for decoding, which in practice has led to high accu-
racy results.

2.3. Shortcomings of CTC

While CTC’s lack of reliance on a predefined alignment
is a huge benefit in terms of versatility with datasets, this
alignment-free nature is a double-edged sword.

Having mutliple valid alignments is realized mathemati-
cally as multiple valid paths through P̂ that must all be
considered at training and test time, necessitating a compu-
tationally expensive DP approach. In addition, there is no
clear output class to take the gradient with respect to, pre-
venting most kinds of classification interpretability methods
such as saliency maps or class activation maps. Lastly, a
Forced Alignment cannot be generated, as, at each timestep,
more than 1 label could be valid, e.g. the blank and another
character.

Forced Alignment with Deep Convolutional Neural Networks

2.4. The Optimal Alignment

Consider this: if we are able to make a strong guarantee
that |X| = |Y | via a pre-defined alignment, then we can
compute a straightforward NLL and have no need for CTC’s
training or inference complexity, while now being able to
generate a Forced Alignment as well as use interpretability
methods. This is our main contribution.

To differentiate from CTC’s multiple alignments, we will
refer to our choice for the pre-defined alignment as the
Optimal Alignment. Its properties should be intuitive:

Definition 1 (Optimal Alignment): The optimal alignment
Z for an input sequence X is a strict one-to-one mapping
(|Z| = |X|) where each label is present for the entire dura-
tion of its existence in X .

For the use case of speech recognition, we can make this
guarantee by utilizing the phonetic transcriptions of the
TIMIT dataset.

2.4.1. WHY PHONEMES?

In CTC-based ASR, it is more common to use a character-
level model rather than a phoneme-level one, so it is worth
justifying our choice. To begin, it has been shown that when
using CTC, a character-level model will successfully learn
the correct acoustics, but not spelling. Intuitively, this makes
sense: given solely an audio input, how would the model be
able to learn a high-level feature such as spelling rules in a
language? So often, an external Language Model is utilized,
but when done, does lead to a competitive Word Error Rate
(WER). To illustrate this shortcoming, below is an example
of a transcript generated by an acoustic model using CTC
over characters:

Guessed transcript: the dus were sufeor to ecs ail
True transcript: the dews were suffered to exhale

Therefore, we will use phonemes. While this does introduce
the extra step of moving from phonemes to words, we will
show in Section 3.4 that this won’t be necessary to do Forced
Alignment (though it is worth mentioning that if we wished
to do ASR, it would).

2.5. TIMIT

Generating the Optimal Alignment is only possible if we
have the duration information of each phoneme in an au-
dio sample. There exists a dataset that has precisely this
information: TIMIT (Garofolo et al., 1988).

The DARPA TIMIT (Texas Instruments + MIT) Acoustic-
Phonetic Continuous Speech Corpus is the de-facto speech
dataset for tasks involving speech-phoneme relationships.
The dataset contains 5.4 hours (6300 sentences) of spoken

sentences. 630 speakers across 8 different dialects each
recite 10 sentences. These sentences are split into 2 dialect
sentences (SA), 450 phonetically compact sentences (SX),
and 1890 phonetically diverse sentences (SI). By convention,
we omit the SA sentences. The dataset provides a set-aside
partition of the dataset as the test set. For each sample,
4 pieces of data are provided: a .WAV audio file, a .TXT
sentence transcription, a .WRD time-annotated word tran-
scription, and a .PHN tim-annotated phoneme transcription.
There are 61 phonemes from its self-defined TIMITBET
(similar to ARPABET), which are mapped to 39 phones at
test time (Lee & Hon, 1989). A great summary of work
on the TIMIT dataset can be found in (Lopes & Perdigao,
2011).

We can leverage the .PHN information to obtain the optimal
alignment. The implementation details can be found in
Section 3.1.2.

3. Method
3.1. Preprocessing

For each TIMIT sample, we generate input-output pairs for
training and testing.

3.1.1. INPUT

While utilizing the raw waveform has had some success, we
chose to preprocess the waveform by generating log-Mel
Spectrograms, i.e. taking its Short Term Fourier Transform
(STFT), projecting the result onto the Mel Scale, and taking
the logarithm of its magnitude. The number of mel filter-
banks is left as a hyperparamter. In addition, first and second
derivatives along the frequency dimension are appended as
well. Lastly, these features were normalized to have 0 mean
and unit variance.

We chose to use 40 mel filterbanks, leaving the final shape
of the input to the model as (120, ∗).

3.1.2. OUTPUT

Diverging from the usual choice to use the phonetic tran-
script as-is, we modify it by encoding duration information,
thus creating the optimal alignment. Naively, we could
accomplish this by listing each phoneme for the durations
provided in these .PHN files.

However, TIMIT time-annotates the phonemes w.r.t. the
time dimension of the waveform (t), whereas our input spec-
trograms have a modified time dimension (τ). While the
exact function for this mapping differs depending on the
implementation parameters of the underlying Short-Term
Fourier Transform (STFT), we will show our implementa-
tion and leave appropriate adjustments to the reader.

Forced Alignment with Deep Convolutional Neural Networks

We assume that that the STFT is computed via padding the
input to always ensure a centered window. Two hyperpa-
rameters are important: the hop length (HL) between each
successive Fourier Transform, and the window length (WL)
over which each Fourier Transform is computed over. We
define a time mapping function f : Z+ → Z+ as:

f(t) =

⌊
max

(
0,

⌊
t− WL

2

HL

⌋)⌋
(5)

The derivation of this function and additional commentary
regarding its properties can be found in Appendix A. For
the rest of this paper, we will refer to the pre-processed,
duration encoding phonetic transcript that will be used as
the output in the model as Z = z1 . . . zn.

Figure 2 illustrates the entire process for an example from
the TIMIT training dataset.

3.2. Model

Given our desire for effiency and interpretability, in combi-
nation with the 2-dimensional nature of our audio features,
we chose to utilize a Deep Convolutional Neural Network to
model P (Z|X). There has been several instances of success
in using these models for ASR accuracy tasks (Collobert
et al., 2016; Li et al., 2019), though we chose to use one
heavily inspired by (Zhang et al., 2017).

The input is passed into 10 convolutional layers, the first 4
generating 128 activaton maps, while the last 6 generate 256.
A kernel of size (3, 5), longer along the time dimension, and
PReLU activation with α = 0.1 are used. To keep the size
of the time dimension unchanged, we only pad along that
dimension and allow the feature dimension to shrink with
each layer. The first layer has pooling across the feature
dimension of shape (3, 1).

In order to preserve the time dimension and allow for a
discriminative model that models the probaility at each
timestep of the input, we do not completely flatten the fi-
nal convolutional activation maps into a singular vector
to feed into the fully-connected layers. Instead, we only
flatten across the channel dimension, leaving us with a 2-
dimensional (channels ∗ features, time) input to the FC
layers. Here, we simply duplicate the DNN and apply it
to each column separately, each generating a conditionally
independent softmax distribution. Figure 3 illustrates this
process.

The 3 fully connected layers all have 1024 neurons, with
a final layer mapping the neurons to the number of labels,
which in our case is 61 given the non-collapsed TIMIT
phonemes. Finally, a log-softmax layer is added to generate
a probability distribution for each time-step. Every layer in
the network aside from the first and last make use of a 0.3

Dropout (Srivastava et al., 2014).

3.3. Training

The model was trained on a single NVIDIA RTX 2060 for
15 epochs, with a batch size of 3, the ADAM (Kingma &
Ba, 2017) optimizer with a learning rate of 10−5, and model
weights initialized uniformly between [−0.05, 0.05].

3.3.1. LOSS FUNCTION

At each time step, a probability distribution exists over all
the labels. Therefore, our chosen loss function was a slightly
modified Negative Log Likelihood that averaged the NLLs
across all timesteps.

L(P̂ , Z) =
−

n∑
t=1

ln
(
P̂t(zt|X; θ)

)
n

,Z = z1 . . . zn (6)

3.4. Inference

As is customary when using the TIMIT dataset, we first
map all output phonemes to the 39 test phonemes before
any inference is done.

With the output of the model Ŷ ∈ Xn, which encodes
phonetic as well as duration information, we can generate
a transcript Ỹ ∈ Xm, reminiscent of the original output Y ,
by simply collapsing all repeats. If we were interested in
the efficacy of our method on creating an ASR system, we
could compute the Levenshtein (edit) distance between Y
and Ỹ to get the Phoneme Error Rate.

3.4.1. FORCED ALIGNMENT

The provided output of our model Ŷ naturally provides a
Forced Alignment of the phonemes. In practice though,
an alignment of words to timestamps is much more useful.
Since most datasets for supervised ASR include a word
transcript, we already know where the spaces (which are
equivalent to the times where words start/end) should exist.
The challenge is figuring out how to infer the position of the
spaces in our phonetic output Ỹ .

One possibility is to map Ỹ to words, but we decided not
to pursue this route due to the complexity it introduces.
Phoneme-to-word models warrrant an entirely separate re-
search question.

Instead, we decided to stay in the realm of phonemes. Our
algorithm only requires a pronunciation dictionary; we used
the CMU Pronunciation Dictionary. The main idea is to
look on the edit path between Y and Ỹ and find which
substring of Ỹ corresponds to when the 〈sp〉’s occur in
Y . The details can be found in Algorithm 1. This is our
secondary contribution.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict/

Forced Alignment with Deep Convolutional Neural Networks

Figure 2. Preprocessing to generate duration-encoding output transcript. The example shown above is from TRAIN/DR5/FKKH0/SX390.

Figure 3. The latter half of the neural network pipeline. The blue path follows the network modelling P̂t(zt|X; θ) by feeding the
channel-flattened tth timestep of the final convolutional activation map, the column vector w[∗,t], into the fully-connected layers. This is
repeated ∀t ∈ [1, n].The orange path shows the gradient flow backwards which is helpful for GRAD-CAM.

Forced Alignment with Deep Convolutional Neural Networks

Algorithm 1 Forced Alignment

Input: Ground truth Y , guess Ỹ , pronunciation dictio-
nary d
Output: Guess transcript s with 〈sp〉’s in estimated loca-
tions
p := []
s := []
for w = word in Y do

Add d(w) to p
Add 〈sp〉 to p

end for
Note: DP graph has words starting at index 1
e := EditPath(p, Ỹ)
prev := None
for (i, j) ∈ e do

curr := Ỹi−1
if curr != prev then

Add curr to s
if pj−1 == 〈sp〉 then

Add 〈sp〉 to s
end if

end if
prev = curr

end for

With the location of where the word boundares exist wrt
the phonemes, i.e. “after the third p”, we can return to Ŷ
to get the spectrogram-time indices where the boundaries
occur. Thus the process is complete without ever moving to
word-space. An visualization of this algorithm can be found
in Figure

3.5. Interpretability

Since our decoding scheme is a straightforward argmax,
and this is the optimal method, we can now leverage stan-
dard interpretability methods as each timestep has a single,
well-defined target class that we can take gradients with
respect to.

Recall the details of our convolutional layers → FC lay-
ers: we do not flatten across the time dimenson, so each
slice of the output P̂t is computed independently of all other
timesteps via the FC layers. Therefore, the gradient flows
backwards until the tth slice of the output of the final con-
volutional layer. When using a method like GRAD-CAM,
we only receive a 1-dimensional heatmap.

As an added bonus, we can utilize the word boundaries
from our Forced Alignment to get activation maps for entire
words. So we can normalize and concatenate the generated
heatmaps to get the activation map for entire words, or even
phrases, as well.

Figure 4. The space-inserting algorithm based on the Levenshtein
Distance matrix. The edit path is highlighted in green while the
suggested index of the 〈sp〉 is in red.

4. Results
4.1. Alignment Error (AE)

To test the efficacy of our model to create a Forced Align-
ment, we define the Alignment Error (AE) to be the average
difference between the computed word boundaries and the
ground truth.

AE =

∑
i |guessi,end − truthi,end|

of words
(7)

Our model achieved an average AE of 67 ms. This is the
first result for pure CNN models to our knowledge, though a
discussion of the great performance of HMM-based models
can be found in (Hosom, 2009).

4.2. Accuracy

To be thorough, we tested the accuracy of the model. It
achieved a Phoneme Error Rate of 22.8% on TIMIT test
set. This could probably be improved upon using maxout
networks or architecture changes, but we leave that to future
work.

5. Conclusion
In this paper, we investigated whether purely Convolutional
Neural Networks could generate Forced Alignents of speech
to text. By leveraging the phonetic information provided
in the TIMIT dataset, we were able to create an Optimal

Forced Alignment with Deep Convolutional Neural Networks

Figure 5. The Class Activation Map using GRAD-CAM for the
word ’picked’ for the example TRAIN/DR5/FKKH0/SX390 in
TIMIT.

Alignment that removed the need to use CTC, enabling not
only Forced Alignment, but GRAD-CAM as well. On top
of a phoneme alignment, we also introduced a Levenshtein-
distance based algorithm for learning word boundaries with-
out ever moving into word space. On the entire TIMIT
dataset, our model achieved an average error of 67 mil-
liseconds compared to the true word boundaries, while also
achieving a 22.8% error on phoneme accuracy given our
severly lacking compute for such a deep model.

6. Future Work
While the focus of this work was on possibility, the major
improvement from here would be on optimizing for better
error rates. It is somewhat shortsighted to restrict ourselves
to purely convolutional models, as recurrent models intu-
itively make more sense for sequential information at a
higher cost. For accuracy tasks, CNN’s in combination with
recurrent modules such as RNNs/GRUs/LSTMs (Sainath
et al., 2015; Amodei et al., 2015) and residual connections
(Zhang et al., 2016; Wang et al., 2017) show improved per-
formance. Even just a pure BLSTM model shows fantastic
accuracy (Fernández et al., 2008).

In addition, given the depth of our model, it would be inter-
esting to see whether having access to more compute would
lead to a better result as we could search over a greater range
of hyperparameters.

References
Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper,

J., Catanzaro, B., Chen, J., Chrzanowski, M., Coates,
A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner,
C., Han, T., Hannun, A., Jun, B., LeGresley, P., Lin, L.,

Narang, S., Ng, A., Ozair, S., Prenger, R., Raiman, J.,
Satheesh, S., Seetapun, D., Sengupta, S., Wang, Y., Wang,
Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., and Zhu,
Z. Deep speech 2: End-to-end speech recognition in
english and mandarin, 2015.

Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. Listen,
attend and spell, 2015.

Collobert, R., Puhrsch, C., and Synnaeve, G. Wav2letter:
an end-to-end convnet-based speech recognition system,
2016.

Fernández, S., Graves, A., and Schmidhuber, J. Phoneme
recognition in timit with blstm-ctc, 2008.

Garofolo, J. et al. Darpa timit acoustic-phonetic continuous
speech database. National Institute of Standards and
Technology (NIST), 1988.

Graves, A., Fernández, S., and Gomez, F. Connectionist
temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. In In Proceedings
of the International Conference on Machine Learning,
ICML 2006, pp. 369–376, 2006.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu,
J., Han, W., Wang, S., Zhang, Z., Wu, Y., and Pang,
R. Conformer: Convolution-augmented transformer for
speech recognition, 2020.

Hannun, A. Sequence modeling with ctc. Distill, 2017. doi:
10.23915/distill.00008. https://distill.pub/2017/ctc.

Hosom, J.-P. Speaker-independent phoneme align-
ment using transition-dependent states. Speech Com-
munication, 51(4):352–368, 2009. ISSN 0167-
6393. doi: https://doi.org/10.1016/j.specom.2008.11.
003. URL https://www.sciencedirect.com/
science/article/pii/S0167639308001775.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Lee, K.-F. and Hon, H.-W. Speaker-independent phone
recognition using hidden markov models. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 37
(11):1641–1648, 1989.

Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev, O.,
Cohen, J. M., Nguyen, H., and Gadde, R. T. Jasper: An
end-to-end convolutional neural acoustic model, 2019.

Lopes, C. and Perdigao, F. Phoneme recognition on the timit
database. In Ipsic, I. (ed.), Speech Technologies, chap-
ter 14. IntechOpen, Rijeka, 2011. doi: 10.5772/17600.
URL https://doi.org/10.5772/17600.

https://www.sciencedirect.com/science/article/pii/S0167639308001775
https://www.sciencedirect.com/science/article/pii/S0167639308001775
https://doi.org/10.5772/17600

Forced Alignment with Deep Convolutional Neural Networks

Sainath, T., Vinyals, O., Senior, A., and Sak, H. Convo-
lutional, long short-term memory, fully connected deep
neural networks. In ICASSP, 2015.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localiza-
tion. International Journal of Computer Vision, 128(2):
336–359, Oct 2019. ISSN 1573-1405. doi: 10.1007/
s11263-019-01228-7. URL http://dx.doi.org/
10.1007/s11263-019-01228-7.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. In The Journal of Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

Wang, Y., Deng, X., Pu, S., and Huang, Z. Residual convo-
lutional ctc networks for automatic speech recognition,
2017.

Zhang, Y., Chan, W., and Jaitly, N. Very deep convolutional
networks for end-to-end speech recognition, 2016.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Bengio, C.
L. Y., and Courville, A. Towards end-to-end speech recog-
nition with deep convolutional neural networks, 2017.

Zhou, B., Khosla, A., A., L., Oliva, A., and Torralba, A.
Learning Deep Features for Discriminative Localization.
CVPR, 2016.

A. Appendix
Intuitively, we are looking for which ”hops” of the Fourier
Transform cover a sample in the waveform. This is equiva-
lent to its corresponding waveform times. As is illustrated
in Figure 6, from the perspective of the spectrogram time τ ,
the range of covered t for a τ can be defined as:

t ∈
[
τ ∗ HL− WL

2
, τ ∗ HL +

WL

2

]
However, there is no guarantee that the mapping of time-
to-spectrogram is one-to-one. With our parameters, a 400
sample Window Length and a 200 sample Hop Length, each
sample of the waveform will be covered by exactly 2 slices
of the spectrogram. We heuristically choose to utilize the

Figure 6. An illustration of how f works. Although overlapping
regions exist, we choose the first satisfying τ .

first such τ . This corresponds to the first integer satisfying:

t = τ ∗HL+
WL

2

τ =
t− WL

2

HL

Accounting for the implicit initial padding of the Fourier
Transform and non-negative spectrogram times, we arrive
at our final expression:

f(t) = max

(
0,

⌊
t− WL

2

HL

⌋)

A natural question regarding this function is whether the
choice to use the first satisfying τ will cause overlap prob-
lems. Specifically, is it possible for us to omit a unique
label using our method? To answer this, we can look at the
underlying parameters of the STFT.

We utilized a 400-point DFT and window length, and a
hop length equal to half the window length, all defaults
in Pytorch, in addition to a standard 16.5 kHz sampling
rate. Therefore, each time-slice of the resultant spectrogram
covers 400

16500 ≈ 0.024 seconds, or 24 ms. For our method
to ”miss” a phoneme, it would need to be spoken for less
than 24 ms before the next one, which we believe does not
happen often in practice. Our results support this belief.

http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7

