
CS-598: Deep Generative and Dynamical Models Spring 2023

Topic 25: Neural Ordinary Differential Equations 2
Lecturer: Arindam Banerjee Scribe: Nicolas Nytko, Sean Farhat, Nathanael Assefa

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

25.1 Augmented Neural ODEs

25.1.1 Background

In the prior lecture, we covered Neural Ordinary Differential Equations (NODEs), a more continuous analog
of the fixed step Euler Integral view of ResNets presented in the Awarded NeurIPS ’18 best paper by David
Duvenaud’s UToronto Team[3].

Figure 25.1: Lecture illustration from the Toronto NODEs Paper

We can illustrate this Euler integral perspective of recurrence in the following expression. Consider the

25-1



Topic 25: Neural Ordinary Differential Equations 2 25-2

propagation of the hidden state from a layer t to t + 1 in ResNets as ht+1 = ht + ft (ht) where ht ∈ Rd

is the hidden state at layer t. Notice that the expression can be rearranged into the equivalent expression

lim∆t→0
ht+∆t−ht

∆t = dh(t)
dt = f(h(t), t) via simple arithmetic. This second expression is a first-order ordinary

differential equation (ODE) in explicit form. The corresponding initial condition (IC) of this ODE is h(0) = x
as a matter of technicality because the input layer takes in the input vector x.

To make the ResNets analogy more explicit, we can map an input x to some output y by a forward pass
of the neural network adjust the weights of the network to match y with some ytrue . In NODEs, we map
an input x to an output y by solving an ODE starting from x. We then adjust the dynamics of the system
(encoded by f ) such that the ODE transforms x to a y which is close to ytrue .

25.1.2 NODEs for Continuous and Discontinuous Functions

The author’s term the vector field approximated by the NODE the flow ϕt : Rd → Rd is defined as the hidden
state at time t, i.e. ϕt(x) = h(t), when solving the ODE from the initial condition h(0) = x.

Although we can use ODEs to model flows ϕ(x) ∈ Rd we may be interested in learning classification functions
from Rd to R. The authors define a NODE analog to Lin & Jegelka’s (2018) ResNets model for this task,
producing a simple model architecture: an ODE layer, followed by a linear layer; defining a model from
g(x) = L(ϕ(x)) where L : Rd → R.

25.1.3 NODEs Approximation Counter Examples

The authors present functions that NODEs cannot represent, motivating their work.

Counter Example 1: Let g1 d : R → R be a function such that g1 d(−1) = 1 and g1 d(1) = −1. The flow
of an ODE cannot represent g1d(x).

The authors note the puzzling situation that if NODEs can be interpreted as continuous equivalents of
ResNets, so it is interesting to consider why ResNets can represent g1 d(x) but NODEs cannot. They note
that this is due to an artifact of the Poincaré–Miranda theorem, or specifically that ab intermediate value of
the flow vector field associated with f(h(t), t) of the ODE cannot be unique and bijective in this expression
because it must intersect at an intermediate value.

Counter Example 2: Let 0 < r1 < r2 < r3 and let g : Rd → R be a function such that{
g(x) = −1 if ∥x∥ ≤ r1

g(x) = 1 if r2 ≤ ∥x∥ ≤ r3

increasing number of function evaluations (NFE) where ∥ · ∥ is the Euclidean norm. The function maps all
points inside the blue sphere to -1 and all points in the red annulus to 1 . Neural ODEs cannot represent
g(x).

25.1.4 NODEs Approximation Limits

NODEs approximate homeomorphisms : The feature mapping ϕ(x) is a homeomorphism, so the features
of Neural ODEs preserve the topology of the input space.

The authors prove this in the appendix by noting that NODEs are continuous and invertible and as a
consequence of the flow of an ODE is a homeomorphism, i.e. a continuous bijection whose inverse is also



Topic 25: Neural Ordinary Differential Equations 2 25-3

Figure 25.2: Illustration of Counter Example 1. Top Left: Possible ideal path unrestricted function mapping
graph for g1d. Top Right: The gradient vector field and possible paths of the function’s mapping in NODEs,
demonstrate the inevitable crossing and zero gradient. Bottom Left: Satisfactory uniform field for linear continuous
identity function (is homomorphic). Bottom Right: Failure of NODE gradient vector field to reconcile crossing and
realize mapping.

Figure 25.3: Illustration of Counter Example 2. The function g(x) maps all the points in the blue circle to -1
and the red ring to 1 . Left: 2D Top Down. Right: 2D Cross Section.

continuous. This implies that NODEs can only continuously deform the input space and cannot separate a
connected region of space.[1]

Noting this proposition the authors run a series of level experiments with the ResNet and NODE (Figure
25.3) to evaluate if smoothing the function space by increasing the size of the NODE network can better
approximate the discontinuous function as a homeomorphism. The experiments produce an increasing number
of function evaluations (NFE) with little improvements that the authors note is akin to an ill-posed ODE
problem. [4]



Topic 25: Neural Ordinary Differential Equations 2 25-4

Figure 25.4: Increasing number of function evaluations (NFE) in approximating a 3D non-homeomorphic function

25.1.5 Augmented NODEs (ANODE)

The authors then propose the following approach that they term the Augmented NODE (ANODE):

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
Lifting the ODE from Rd to Rd+p additional dimensions to avoid trajectories intersecting each other. Letting
a(t) ∈ Rp denote a point in the augmented part of the space, we can formulate the augmented ODE problem
as we concatenate every data point x with a vector of zeros and solve the ODE on this augmented space. An
additional smoother, f , is applied to give simpler flows that the ODE solver can compute in fewer steps.

25.1.6 ANODE Discussion

The authors run similar experiments to the NODE on classification type problems and demonstrate ANODEs
can model more complex functions using simpler flows while achieving lower losses, reducing computational
cost, and improving stability and generalization where NODEs lead to slower learning and complex flows
which are expensive to compute.

The authors note that the success of the lifting procedure for augmenting NODEs leaves a few areas
for thought.

• ANODEs may not always be appropriate as increasing the dimension of a function may be undesirable
for specific applications.

• The augmented dimension can be seen as an extra hyper-parameter to tune and the selection process
isn’t optimized.

• While the concatenation of at least 2 vectors in the lift yields benefits in binary the classification
considered since NODEs only learn features that are homeomorphic to the input space, excessively
large augmented dimensions (e.g. adding 100 channels to MNIST), the model tends to perform worse
with higher losses and NFEs.

• They authors call for further analysis on why lifting augments NODEs for bounding the range in
the former item and propose also exploring noising techniques for adapting NODEs for classification
problems.



Topic 25: Neural Ordinary Differential Equations 2 25-5

25.1.7 ANODE Results

The authors have extensive well visualized experimental results illustrating the effectiveness of augmenting
the NODE. The figure (25.5) below highlights which value each point in the input space gets mapped by an
optimized NODE and an optimized ANDOE. Because NODEs deform spaces continuously the learned flow is
smeared through the annulus while the ANODEs map the points accurently and with better generalization.

The next set of figures, (25.6) and (25.7), demonstrate the accuracy improvements and reduced computation
derived from the ANODEs design to learn simpler flows. All these results are highlighted at the start of the
prior section.

Figure 25.5: Plots of how ANODEs Generalize: (Left) Plots of how NODEs and ANODEs map points in the input
space to different outputs (for zero training loss). ANODEs generalize better. (Middle) Training and validation losses
for NODE, (Right) for ANODE

Figure 25.6: Loss function for NODEs and ANODEs trained on d=1 (top) and d=2 (bottom). ANODEs are faster.
On the right are the flows learned by NODEs and ANODEs. ANODEs learn simple nearly linear flows, while NODEs
learn complex (expensive) flows



Topic 25: Neural Ordinary Differential Equations 2 25-6

Figure 25.7: Evolution of features during training for ANODEs. The top left pane shows the feature space for a
randomly initialized ANODE and the bottom right shows the features after training. The right panel shows the
evolution of NFEs during training

25.2 Approximation Capabilities of Neural ODEs and Invertible
Residual Networks

25.2.1 Connection to ANODEs

This is a theoretical work directly addressing the last bullet in the page above regarding the dimension
of the sufficent dimension lift, as acknowledged in the paper’s ”Our Contribution” section. The authors
show that NODEs and an i-ResNets–a ResNet with a bounded Lipschitz of the activation less than 1 to
ensure invertibility, followed by a single linear layer, can approximate functions, including non-invertible
functions, equally well as any traditional feedforward neural network. Since feed-forward networks that are
shallow-but-wide or narrow-but-deep unconstrained ResNet-based architecture are universal approximators,
so are ODE-Nets and i-ResNets.[2]

The authors present both Neural ODEs and i-ResNet as recently proposed methods for enforcing invertibility
of residual neural models. The authors then apply a set of modifications to produce a generic technique
for modeling homeomorphisms by first noting the limited approximation capabilities of Neural ODEs and
i-ResNets. Finally, they conclude by showing that a Neural ODE or an i-ResNet with a single linear layer is
sufficient to turn the model into a universal approximator for non-invertible continuous functions.[5]

25.2.2 Approach

The authors begin the analysis by citing the results of the ANODE authors that focus on a p-ODE-Net
followed by a linear layer and reference the counterexamples and the subsequent discussions above. They
lay the claim that setting q = p+ 1 is enough to turn a NODE followed by a linear layer into a universal
approximator Rp → R by modeling invertible functions - homeomorphisms - via analyzing pure ODENets
and i-ResNets. They begin by laying a similar but more generic counter-example in their first theorem.

Theorem 1: Let X = Rp, and let Z ⊂ X be a set that partitions X into two or more disjoint, connected
subsets Ci, for i = [m]. Consider a mapping h : X → X that

• is an identity transformation on Z, that is, ∀z ∈ Z, h(z) = z

• maps some x ∈ Ci into h(x) ∈ Cj , for i ̸= j.



Topic 25: Neural Ordinary Differential Equations 2 25-7

Figure 25.8: Flow Definition Graphic from Lecture

Then, no p-ODE-Net can model h, showing of X → X invertible mappings that cannot be expressed by these
modeling approaches when they operate within X . They then prove that any homeomorphism X → X , for
X ⊂ Rp, can be modeled by a Neural ODE / i-ResNet operating on an Euclidean space of dimensionality 2p
that embeds X as a linear subspace.

25.2.3 ANODE Approximation Proof

The authors construct a mapping from the original problem space, X ∈ Rp into R2p that suffices two
conditions, (1) preserves X as a p-dimensional linear subspace consisting of vectors and (2) leads to an ODE
that maps

[
x, 0(p)

]
→

[
h(x), 0(p)

]
.

This provides a solution with a structure that is convenient for out-of-the-box training and inference using
NODEs. If the NODEs operates on Euclidean space of dimensionality q > p, we can approximate arbitrary
p-homeomorphism X → X , as long as q is high enough. Under the constructed mapping above, it suffices to
take q = 2p via adding p zeros to input vectors. This produces the ANODE range bound mentioned in the
last item of the future work sections in the author’s Theorem 2.

Theorem 2: For any homeomorphism h : X → X ,X ⊂ Rp, there exists a 2p−ODE−Net ϕT : R2p → R2p

for T = 1 such that ϕT

([
x, 0(p)

])
=

[
h(x), 0(p)

]
for any x ∈ X .

This theorem is proven constructively by showing a vector field in R2p with the desired properties. The
authors analyze the extent to which the extra p dimensions can ensure the bijectivity of the paths in this
construction, a sample delta function is used and operations are enumerated along the network.

Intuitively, the result is an artifact of the ODE variability with respect to time and the discrete representation
in vector form. It is possible to always find a nonintersecting path representation via the NODE of 2p for the



Topic 25: Neural Ordinary Differential Equations 2 25-8

Figure 25.9: Trajectories in R2p that embed an Rp → Rp homeomorphism, using f(τ) = (1− cosπτ)/2 and
g(τ) = (1− cos 2πτ). Three examples for p = 1 are shown, including the mapping h(x) = −x that cannot be modeled
by Neural ODE on Rp, but can in R2p.

p-dimensional homeomorphism due to the single differentiable variable of the ODE. The authors present the
paper’s sole figure (25.9) to illustrate this trajectory relaxation.

Based on the above result, we now have a simple method for training a Neural ODE to approximate a given
continuous, invertible mapping h and its continuous inverse h−1, provided each sample x is augmented with
p zeros.

25.2.4 Core Result

The authors provide this last general result in their final Theorem 7 that NODEs and iResNets are universal
approximators, and the expression is implemented by adding a linear layer for lifting/projecting the dimensions
of the ANODEs/2p-ODE-Net into the input/output dimensions p/r.

Theorem 7: Consider a neural network F : Rp → Rr that approximates function f : X → Rr that is
Lebesgue integrable for each of the r output dimensions, with X ⊂ Rp being a compact subset. For q = p+ r,
there exists a linear layer-capped q-ODE-Net that can perform the mapping F . If f is Lipschitz, there also is
a linear layer-capped q-i-ResNet for F .

25.2.5 Experimental Results

The paper runs experiments on CIFAR10 using an off-the-shelf ResNet implementation and the ANODE
from the first paper, and it validates the theorems according to their results, shown below.

References

[1] Stephen A Andrea. On homeomorphisms of the plane, and their embedding in flows, 1965.

[2] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks, 2019.



Topic 25: Neural Ordinary Differential Equations 2 25-9

Figure 25.10: Left and center: test set cross-entropy loss, for increasing number d of null channels added to RGB
images. For each d, the input images have dimensionality 32 × 32 × (3 + d). Left: ODE-Net with k=64 convolutional
filters; center: k=128 filters. Right: Minimum of test set cross-entropy loss across all epochs as a function of d, the
number of null channels added to input images, for ODE-Nets with different number of convolutional filters, k.

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations, 2019.

[4] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes, 2019.

[5] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural odes and
invertible residual networks, 2020.


	Augmented Neural ODEs
	Background
	NODEs for Continuous and Discontinuous Functions
	NODEs Approximation Counter Examples
	NODEs Approximation Limits
	Augmented NODEs (ANODE)
	ANODE Discussion
	ANODE Results

	 Approximation Capabilities of Neural ODEs and Invertible Residual Networks
	Connection to ANODEs
	Approach
	ANODE Approximation Proof
	Core Result
	Experimental Results


